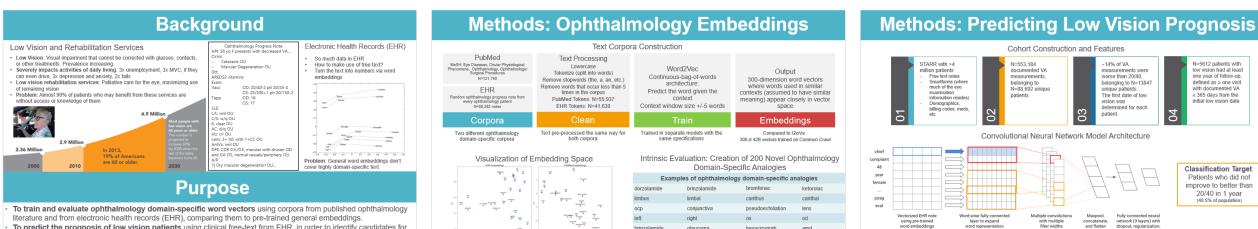
Computing Over Ophthalmology Clinical Text From Electronic Health Records: Case Study in Identifying Candidates for Low Vision Rehabilitation **Using Neural Word Embeddings**

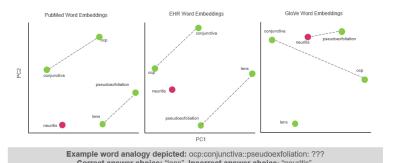

Sophia Y Wang, MD; Benjamin Tseng Byers Eye Institute, Department of Ophthalmology, Stanford University

(1000 words x 512)

using pre-traine

word embedding

(1000 words x 300



0.65

0.74

literature and from electronic health records (EHR), comparing them to pre-trained general embeddings To predict the prognosis of low vision patients using clinical free-text from EHR, in order to identify candidates for low vision rehabilitation services

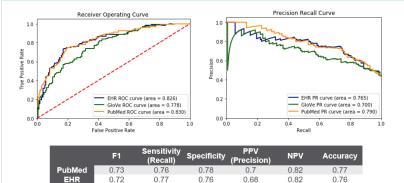
Results: Evaluation Using Analogies

Correct answer choice: "lens". Incorrect answer choice: "neuritis" Cosine similarity between (pseudoexfoliation - ocp + conjunctiva) and either lens or neuritis. PubMed and EHR word embeddings identifies the correct answer while GloVe chooses the wrong answer Overall Test Scores: PubMed: 95.0%; EHR: 86.0%; GloVe: 91.0 %

Results: Predicting Low Vision Prognosis

brinzolamid

sclera


alaucoma

sclerotom

bevacizumat

amd

iridotom

0.63

0.58

0.78

0.68

Conclusions

(1024)

and sigmoid output

with multiple filter widths

(256 conv., 4 filter

Iwidth = 3. 5. 7. 10

- For predictive tasks using highly domain-specific text, using domainspecific neural word embeddings may yield better performance than deneral word embeddings.
- Training word embeddings using domain-specific published literature abstracts is relatively easy and has good coverage even of text from electronic health records.
- · We found that analyzing ophthalmology domain-specific word embeddings using analogies required creation of ophthalmology domain-specific analogies.
- Using ophthalmology domain-specific word embeddings, we were able to predict the prognosis of low vision patients using clinical free text with good performance.

N=5612 natients with

low vision had at leas

one year of follow-up

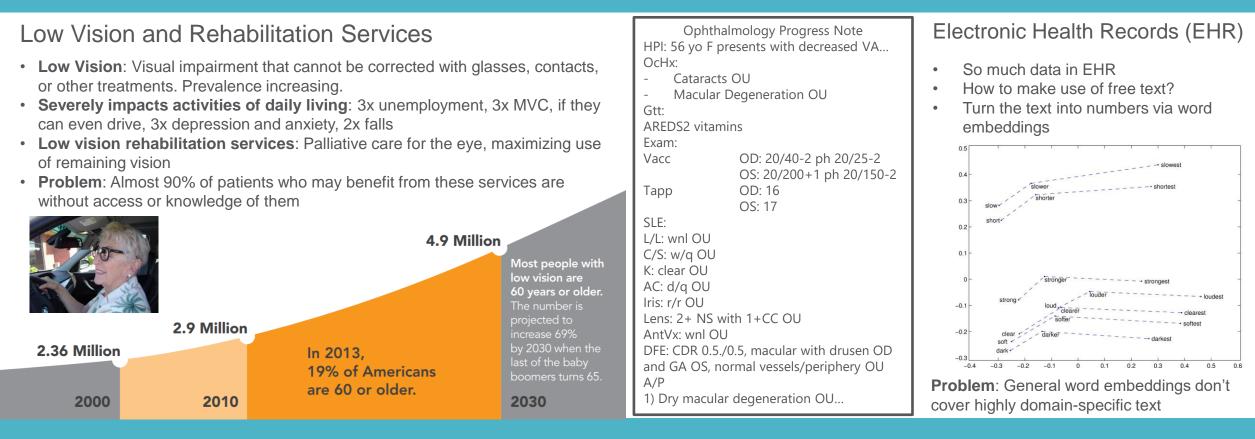
defined as ≥ one visi

with documented VA

> 365 days from the

nitial low vision date

Classification Target Patients who did not

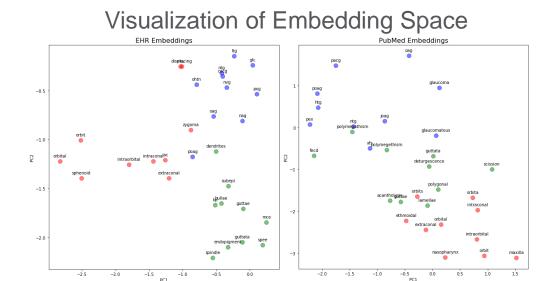

improve to better than

20/40 in 1 year

(40.5% of population

Email me at **sywang@stanford.edu**

Background


Purpose

- To train and evaluate ophthalmology domain-specific word vectors using corpora from published ophthalmology literature and from electronic health records (EHR), comparing them to pre-trained general embeddings.
- To predict the prognosis of low vision patients using clinical free-text from EHR, in order to identify candidates for low vision rehabilitation services

Methods: Ophthalmology Embeddings

Text Corpora Construction

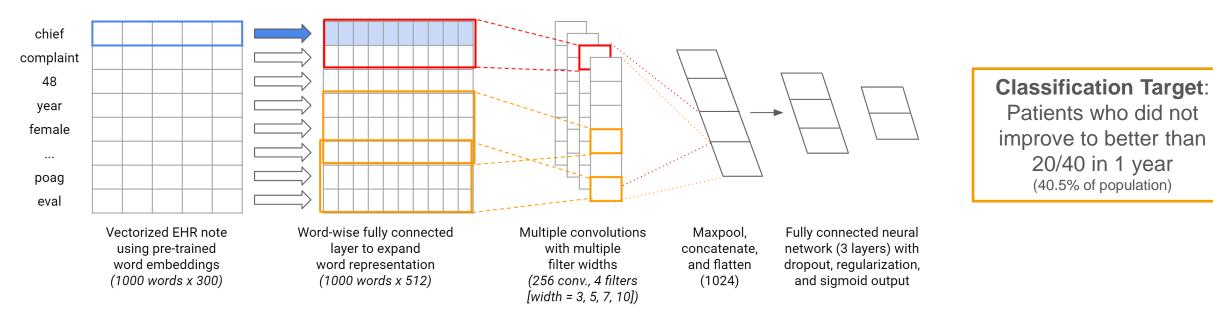
PubMed MeSH: Eye Diseases, Ocular Physiological Phenomena, Ophthalmology, Ophthalmologic Surgical Procedures N=121,740	Text Processing Lowercase Tokenize (split into words) Remove stopwords (the, a, an, etc.) Remove words that occur less than 5 times in the corpus PubMed Tokens: N=55,937 EHR Tokens: N=41,630	Word2Vec Continuous-bag-of-words architecture:	Output 300-dimension word vectors where words used in similar contexts (assumed to have similar meaning) appear closely in vector space	
EHR Random ophthalmology progress note from every ophthalmology patient N=89,282 notes		Predict the word given the context Context window size +/-5 words		
Corpora	Clean	Train	Embeddings	
Two different ophthalmology domain-specific corpora	Text pre-processed the same way for both corpora	Trained in separate models with the same specifications	Compared to GloVe : 300-d 42B vectors trained on Common Crawl	

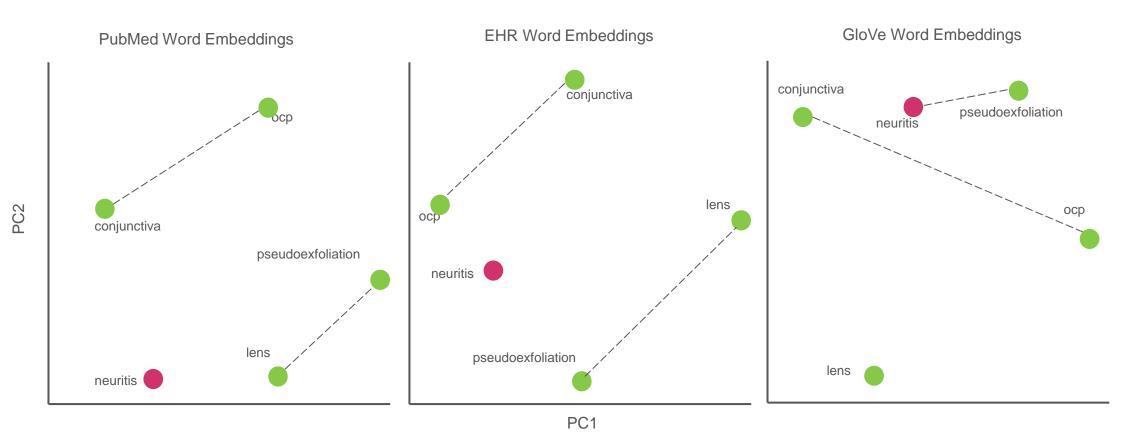
Intrinsic Evaluation: Creation of 200 Novel Ophthalmology Domain-Specific Analogies

Examples of ophthalmology domain-specific analogies

dorzolamide	brinzolamide	bromfenac	ketorolac
limbus	limbal	canthus	canthal
оср	conjunctiva	pseudoexfoliation	lens
left	right	OS	od
brinzolamide	glaucoma	bevacizumab	amd
sclera	sclerotomy	iris	iridotomy

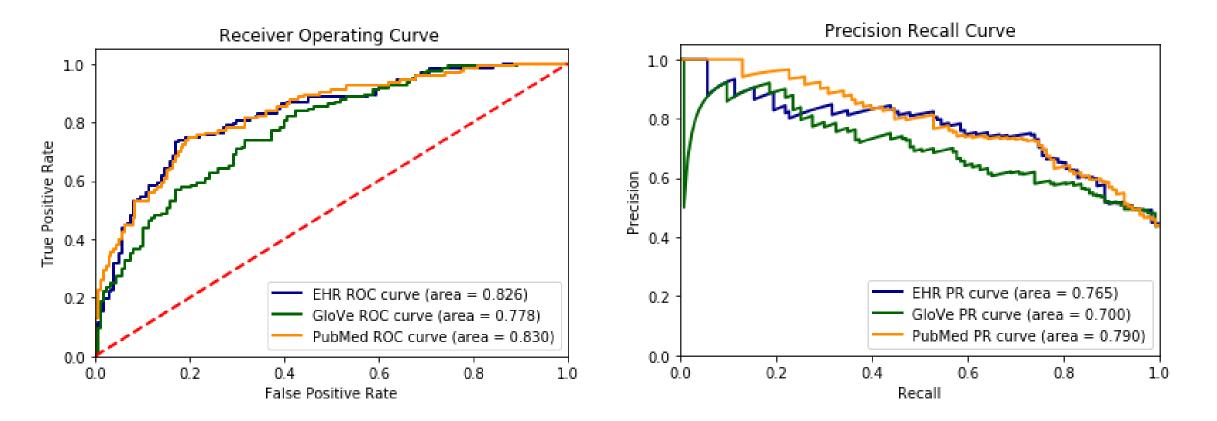
Methods: Predicting Low Vision Prognosis


Cohort Construction and Features


Convolutional Neural Network Model Architecture

20/40 in 1 year

(40.5% of population)



Results: Evaluation Using Analogies

Example word analogy depicted: ocp:conjunctiva::pseudoexfoliation: ??? Correct answer choice: "lens". Incorrect answer choice: "neuritis".
Cosine similarity between (pseudoexfoliation – ocp + conjunctiva) and either lens or neuritis.
PubMed and EHR word embeddings identifies the correct answer while GloVe chooses the wrong answer.
Overall Test Scores: PubMed: 95.0%; EHR: 86.0%; GloVe: 91.0 %

Results: Predicting Low Vision Prognosis

	F1	Sensitivity (Recall)	Specificity	PPV (Precision)	NPV	Accuracy
PubMed	0.73	0.76	0.78	0.7	0.82	0.77
EHR	0.72	0.77	0.76	0.68	0.82	0.76
GloVe	0.65	0.74	0.63	0.58	0.78	0.68

Conclusions

- For predictive tasks using highly domain-specific text, using domainspecific neural word embeddings may yield better performance than general word embeddings.
- Training word embeddings using domain-specific published literature abstracts is relatively easy and has good coverage even of text from electronic health records.
- We found that analyzing ophthalmology domain-specific word embeddings using analogies required creation of ophthalmology domain-specific analogies.
- Using ophthalmology domain-specific word embeddings, we were able to predict the prognosis of low vision patients using clinical free text with good performance.