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Purpose

« To train and evaluate ophthalmology domain-specific word vectors using corpora from published ophthalmology
literature and from electronic health records (EHR), comparing them to pre-trained general embeddings.

* To predict the prognosis of low vision patients using clinical free-text from EHR, in order to identify candidates for
low vision rehabilitation services



Methods: Ophthalmology Embeddings
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Methods: Predicting Low Vision Prognosis
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Results: Evaluation Using Analogies
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Example word analogy depicted: ocp:conjunctiva::pseudoexfoliation: ???
Correct answer choice: “lens”. Incorrect answer choice: “neuritis”.
Cosine similarity between (pseudoexfoliation — ocp + conjunctiva) and either lens or neuritis.
PubMed and EHR word embeddings identifies the correct answer while GloVe chooses the wrong answer.
Overall Test Scores: PubMed: 95.0%; EHR: 86.0%; GloVe: 91.0 %



Results: Predicting Low Vision Prognosis
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Conclusions

* For predictive tasks using highly domain-specific text, using domain-
specific neural word embeddings may yield better performance than
general word embeddings.

* Training word embeddings using domain-specific published
literature abstracts Is relatively easy and has good coverage even of
text from electronic health records.

* We found that analyzing ophthalmology domain-specific word
embeddings using analogies required creation of ophthalmology
domain-specific analogies.

* Using ophthalmology domain-specific word embeddings, we were able
to predict the prognosis of low vision patients using clinical free
text with good performance.



