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A B S T R A C T   

Objective: To develop and evaluate novel word embeddings (WEs) specific to ophthalmology, using text corpora 
from published literature and electronic health records (EHR). 
Materials and Methods: We trained ophthalmology-specific WEs using 121,740 PubMed abstracts and 89,282 EHR 
notes using word2vec continuous bag-of-words architecture. PubMed and EHR WEs were compared to general 
domain GloVe WEs and general biomedical domain BioWordVec embeddings using a novel ophthalmology- 
domain-specific 200-question analogy test and prediction of prognosis in 5547 low vision patients using EHR 
notes as inputs to a deep learning model. 
Results: We found that many words representing important ophthalmic concepts in the EHR were missing from 
the general domain GloVe vocabulary, but covered in the ophthalmology abstract corpus. On ophthalmology 
analogy testing, PubMed WEs scored 95.0 %, outperforming EHR (86.0 %) and GloVe (91.0 %) but less than 
BioWordVec (99.5 %). On predicting low vision prognosis, PubMed and EHR WEs resulted in similar AUROC 
(0.830; 0.826), outperforming GloVe (0.778) and BioWordVec (0.784). 
Conclusion: We found that using ophthalmology domain-specific WEs improved performance in ophthalmology- 
related clinical prediction compared to general WEs. Deep learning models using clinical notes as inputs can 
predict the prognosis of visually impaired patients. This work provides a framework to improve predictive 
models using domain-specific WEs.   

1. Introduction 

With the widespread adoption of electronic health records (EHR), 
informatics techniques are increasingly used to mine this rich source of 
information to build prediction algorithms, including in the field of 
ophthalmology [1–3]. However, much of the clinical information is 
captured in unstructured free text using highly specialized 
domain-specific language and abbreviations (Fig. 1) [4,5]. In ophthal-
mology, this includes crucial information on eye examination findings 
which are important indicators of disease severity and prognosis, which 
are difficult to incorporate into prediction models as free text. 

In particular, in ophthalmology there is a need to develop algorithms 
that can predict the visual prognosis of patients with visual impairment, 
in order to better enable the targeting of important resources, such as 
multidisciplinary low vision rehabilitation services [6], to those patients 
most likely to benefit. Almost 3 million adults in the United States are 
estimated to have irreversible low vision and would benefit from such 

rehabilitation services to improve their quality of life and daily func-
tioning [6], but the referral rate is extraordinarily low, leaving almost 90 
% of patients who may benefit without access to or awareness of these 
services [7], which may be due to a variety of reasons including limited 
time during clinic visits to introduce these services, or optimistic as-
sumptions that vision will soon improve with therapy. Using informa-
tion from EHR to identify vision rehabilitation candidates in an 
automated manner could better facilitate timely referrals to improve 
access to these important services. Such predictive algorithms could 
detect particular findings or diagnoses documented in clinical free text 
notes which are known not to be reversible, such as retinal atrophy 
associated with macular degeneration, or predict for particular patients 
that they would not achieve vastly improved vision with treatment. 

The use of neural word embeddings is an approach to incorporating 
biomedical text into prediction models, as word embeddings enable 
computation over free-text by representing word meaning as dense 
numerical vectors. General word embeddings enabled breakthroughs in 
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performance on named entity recognition, sentence classification, rela-
tion extraction, and other general natural language processing tasks [8], 
and general domain GloVe (Global Vectors for Word Representation), 
pre-trained on large corpora of general content such as Common Crawl 
(general internet pages) [9–12], are publicly available. However, use of 
general word embeddings in the biomedical domain may be hampered 
by the concern that many biomedical terms would appear so infre-
quently in conventional corpora that pre-trained word embeddings for 
those terms may not be meaningful. In addition, out-of-vocabulary terms 
which do not appear at all in the corpus vocabulary do not have a 
meaningful word embedding. Word vectors trained on large corpora of 
general biomedical text have also been developed [13,14]. However, 
application to even more subspecialized biomedical domains such as 
ophthalmology, with its own very rich set of abbreviations and termi-
nology [4,5], may pose an especial challenge due to differences in vo-
cabulary and their usage. 

In ophthalmology and in other biomedical domains, a major chal-
lenge to the use of EHR to develop predictive algorithms is the inability 
to incorporate the wealth of information sequestered within the clinical 
free-text, and the use of domain-specific neural word embeddings may 
provide one solution. The objective of this study was to train and eval-
uate word vectors specific to the ophthalmology domain using corpora 
from published ophthalmology literature and from EHRs, comparing 
them to embeddings pre-trained on more general corpora. We include 
evaluation of ophthalmology word embeddings on intrinsic tasks, 
including on a novel set of ophthalmology domain-specific analogies 
developed for this purpose, as well as evaluation on an extrinsic 

prediction task to predict the visual prognosis of visually impaired pa-
tients using clinical free-text notes from the EHR. We hypothesized that 
using ophthalmology domain-specific word embeddings would result in 
better performance on ophthalmology-related tasks than using more 
general word embeddings. The work we present provides a framework 
for training and evaluating domain-specific word embeddings that can 
be generalized to many domains across medicine and applied to a va-
riety of clinical prediction tasks. 

2. Methods 

2.1. Training ophthalmology domain-specific word embeddings 

2.1.1. PubMed ophthalmology embedding Corpus 
We extracted all English-language abstracts indexed in PubMed from 

2009 to 2019 belonging to the MeSH categories of “Eye Diseases,” 
“Ocular Physiological Phenomena”, “Ophthalmology”, “Ophthalmo-
logic Surgical Procedures,” or their subcategories. Animal studies were 
excluded. Abstracts shorter than 50 characters, with an associated title 
shorter than 3 characters, or with no listed authors or journal were 
excluded. In total there were 121,740 ophthalmology abstracts 
included. 

2.1.2. Electronic health records ophthalmology embeddings corpus 
We identified all ophthalmology clinical notes from Stanford STARR 

[15,16] of length > 50 characters. As clinical notes are often copied 
forward from visit to visit for each patient, resulting in highly repetitive 
text, we randomly sample one clinical note for each unique patient, 
resulting in a corpus of 89,282 ophthalmology EHR notes. This study 
received approval from the Institutional Review Board (IRB) of the 
participating institution. 

2.1.3. Corpora processing and model training 
The PubMed and EHR corpora were pre-processed in identical 

fashion. All words were lowercase and tokenized. Common stopwords 
were removed (’a’, ’all’, ’also’, ’an’, ’and’, ’are’, ’as’, ’at’, ’be’, ’been’, 
’by’, ’for’, ’from’, ’had’, ’has’, ’have’, ’in’, ’is’, ’it’, ’may’, ’of’, ’on’, ’or’, 
’our’, ’than’, ’that’, ’the’, ’there’, ’these’, ’this’, ’to’, ’was’, ’we’, ’were’, 
’which’, ’who’, ’with’). In all there were 55,937 tokens in the PubMed 
corpus and 41,630 tokens in the EHR corpus which appeared with fre-
quency ≥ 5 in their respective corpora. Embeddings were trained with 
the established word2vec neural network architecture [11] for the 
continuous-bag-of-words task which predicts a target word given a 
context window. The embedding dimension was set to 300 to facilitate 
comparison to baseline GloVe vectors (see below). The word window 
size was set to 5. Models were trained using Tensorflow (version 2.1.0). 

2.1.4. Baseline embedding comparisons 
We used as our baseline comparisons uncased 300-dimensional 

GloVe vectors, covering 42 billion tokens trained on the Common 
Crawl [9,10], and the 200-dimensional BioWordVec vectors previously 
trained on PubMed biomedical literature and MMIC-III containing EHR 
data from inpatient ICU hospitalization notes [13,14]. 

2.2. Evaluation of word embeddings 

Word embeddings can be evaluated on an “intrinsic” basis, so-called 
because “intrinsic” evaluation only relies upon evaluation of the struc-
ture of the word embeddings themselves, as well as on an “extrinsic” 
basis, which evaluates performance upon downstream applications of 
the word embeddings to specific external tasks [17,18]. 

Fig. 1. Example Ophthalmology Progress Note. 
Legend: There are many specialized and domain-specific terms and abbrevia-
tions, such that even physicians in other specialties would have difficulty un-
derstanding ophthalmology progress notes. Words highlighted in red are those 
which occur very commonly in ophthalmology but are not in the vocabulary of 
general-domain word embeddings (GloVe) (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.). 
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2.2.1. Intrinsic evaluation 

2.2.1.1. Examining vocabulary and principal component visualization of 
example clusters. We examined vocabulary that was common in the EHR 
corpus but that was not in PubMed, BioWordVec, or GloVe corpus, to 
identify potential gaps in coverage for important clinical concepts. After 
training of the ophthalmology word embeddings, we also qualitatively 
examined whether similar concepts were clustered appropriately in 
ophthalmology embedding space. We chose three seed terms, “poag”, 
“orbit”, and “guttae”, and determined their 9 nearest neighbors in the 
corpus in the full embedding space. These three clusters of 10 embed-
dings each were then visualized in a 2-dimensional projection onto the 
first and second principal components of embedding space. These seed 
terms were chosen as they come from different subspecialties of 
ophthalmology; “poag” is an abbreviation for primary open angle 
glaucoma and would be most relevant to the glaucoma subspecialty, 
“orbit” would be most commonly encountered in the context of oculo-
plastics subspecialty notes, and “guttae” is a finding of the cornea that 
would be most commonly encountered in the cornea subspecialty. 

2.2.1.2. Ophthalmology domain-specific analogies. General analogies 
developed to evaluate word vectors cannot be easily extended for use in 
subdomains such as ophthalmology as they do not adequately or accu-
rately test ophthalmology-related concepts. For example, only a small 
fraction of general biomedical domain analogies are relevant to 
ophthalmology. Thus, we developed novel ophthalmology domain- 
specific 200-question analogy test to perform formal intrinsic evalua-
tion of our word embeddings. Ophthalmology-related word pairs with 
analogous semantic relations were matched by a board-certified 
ophthalmologist, identified from words that were common to all three 
sets of embeddings. These word pairs were matched into analogies, for 
example, an analogy constructed as word1:word2::word3:word4 might 
have an example of conjunctiva:conjunctival::eyelid:palpebral. For each 
correct analogy, a random wrong word was chosen from the analogy 
vocabulary to serve as a wrong answer choice compared to word4, the 
correct analogy completion choice. All analogies as well as the random 
wrong word choice were manually reviewed for semantic validity. Final 
analogies are publicly available [19]. For the analogy test, the cosine 
similarity between (word2-word1+word3, word4) and (word2-word1+-
word3, wrongword) was calculated in the PubMed, EHR, BioWordVec, 
and GloVe embedding spaces, and the closer word choice was deter-
mined to be the “answer” for that embedding for that analogy question. 
Accuracy on the analogy test was calculated as wrong answers / total 
number of questions (N = 200). 

2.2.2. Extrinsic evaluation: predicting low vision prognosis 
To evaluate the performance of our domain-specific embeddings on 

an extrinsic task, we mapped words from EHR free-text clinical notes to 
neural word embeddings to use as input features for a deep learning 
model to predict the visual prognosis in a cohort of patients with visual 
impairment. 

2.2.2.1. Cohort definition. We identified from the Stanford Clinical Data 
Warehouse [15] all documented visual acuity measurements (N = 553, 
184) belonging to N = 88,692 unique adult patients from 2009 to 2018 
[16]. Visual acuity measurements were captured from semi-structured 
fields, including distance, near, with refraction, with or without 
habitual glasses or contacts for either eye, using a combination of 
rule-based algorithms based on regular expressions [16]. Low vision on 
a particular encounter date was defined as visual acuity worse than 
20/40 on all visual acuity measurements documented for that 
encounter. If only the visual acuity of one eye was measured for that 
encounter date, as may be common in a postoperative visit focused on 
one eye, then the most recent previous visual acuity for the contralateral 
eye was used to forward fill the missing value for that encounter. In total 
there were N = 13,847 patients with at least one documented encounter 
with low vision. The first date of low vision was determined for each 
patient (hereafter referred to as the index date). We included patients 
with follow-up for at least one year from the index date, defined 
as ≥ one visit with documented visual acuity measurement ≥ 365 days 
from the index date (N = 5612). For these patients, we extracted all 
ophthalmology free-text clinical notes on or prior to the index date 
(N = 5547 patients with available notes). 

2.2.2.2. Modeling approach. The prediction task was to determine 
whether low vision patients would still have poor visual acuity (<20/ 
40) after one year or follow-up, indicating a poor visual prognosis that 
may benefit from referral to low vision rehabilitation services aimed at 
improving quality of life and activities of daily living of visually 
impaired patients by delivering interventions to maximize the function 
of the remaining vision. Overall, 40.7 % (N = 2,258) of patients did not 
improve to 20/40 or better within one year. The model architecture is 
depicted in Fig. 2. The overall architecture is based on a previously 
published TextCNN architecture [20], which utilizes multiple convolu-
tions with multiple filter widths to convolve over word sequences of 
different lengths, thus capturing some information regarding the context 
in which words are used. We used as inputs to the models clinical free 
text notes on or prior to the date of low vision, as these would be the 
same information available to clinicians presented with a low vision 
patient. Because the amount of historical clinical documentation varied 
between patients, we arranged all notes in backwards chronological 

Fig. 2. Visual Prognosis Prediction Task Model Architecture. 
Legend: Words from clinical progress notes were mapped to word embeddings (either EHR, PubMed, BioWordVec or GloVe) and used as inputs to a deep learning 
model. Multiple convolutions with multiple filter widths were passed over the word representation matrix followed by max pooling, concatenation, and flattening 
operations. Subsequent fully connected layers included dropout, regularization, and a final sigmoid output to predict the binary outcome of whether patients would 
have persistent poor visual acuity after one year of follow-up. 
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order on the premise that more recent notes would hold more relevant 
information for prognosis prediction. The most recent 1000 words of 
clinical documentation were mapped to word embeddings (either EHR, 
PubMed, BioWordVec, or GloVe) and used as inputs to the deep learning 
model. This length of input text was arbitrarily chosen to be close to the 
median length of documentation for each patient (923 words). Words 
that were missing from embedding vocabularies were mapped to a 
generic token for unknown words. The embedding layer was followed by 
a fully connected layer to expand the representation matrix to shape 
1000 × 512 and a dropout layer (rate = 0.5). After following hyper-
parameter tuning procedures as described by Zhang et al. [21], we 
arrived at a model architecture which used 4 convolutions of region size 
3, 5, 7, and 10 with 256 filters each, followed by a max pooling layer. 
The resulting vectors are concatenated and flattened and followed by a 
dropout layer (rate = 0.5), a fully connected layer with L2 regulariza-
tion (alpha = 0.01), a subsequent dropout layer (rate = 0.5), an addi-
tional fully connected layer with L2 regularization (alpha = 0.01) and a 
final sigmoid output for the prediction. We randomly selected 6% of the 

training data as the validation set for early stopping. 

2.2.2.3. Model evaluation. The cohort was split into validation and test 
sets of 300 patients each, with the remainder reserved for training. Final 
performance metrics for all models included the standard measures of 
prediction accuracy, sensitivity (recall), specificity, positive predictive 
value (precision), negative predictive value, and F1 score (the harmonic 
mean of precision and recall). We also calculated the area under the 
receiver operating curve (AUROC) and area under the precision-recall 
curve (AUPRC). In addition, notes from a random subset of the test set 
of patients (N = 102) were evaluated by a board-certified ophthalmol-
ogist (SYW) to provide a human-level performance baseline for evalu-
ation metrics. 

2.2.2.3.1. Code availability. All code used to train and evaluate 
ophthalmology word embeddings is available in a public code repository 
[19]. PubMed ophthalmology word embeddings are also available for 
download. Due to the potential sensitive patient health information 
contained in words in the EHR, our EHR word embeddings are not 

Table 1 
Vocabulary Comparison between Word Embeddings.  

Words in EHR but not in GloVe Words in EHR but not in PubMed Embeddings Words in EHR but not in BioWordVec 

Word Frequency Word Frequency Word Frequency 

tonopen 52650 hx 71719 {redacted, physician name} 12751 
autorefraction 20272 psh 55803 {redacted, physician name} 9805 
adnexae 17195 disp 53091 {redacted, zip code} 6972 
perrl 10633 rfl 50736 pfshx 5804 
pciol 7969 reconciliation 33314 {redacted, zip code} 4392 
pseudophakia 7186 dob 31171 {redacted, physician name} 4217 
pfshx 5804 dear 29437 {redacted, physician name} 3156 
dermatochalasis 5652 6995 28153 cannot 2794 
proparacaine 4876 thank 27984 cuie2 2204 
lissamine 3683 accomodation 26110 eoph453 2204 
eomi 3043 {redacted, zip code} 21635 basename 2035 
{redacted, physician name} 3156 sincerely 19479 {redacted, physician name} 1987 
cclist 2911 csn 19446 {redacted, zip code} 1794 
hypertropia 2646 dist 17459 {redacted, zip code} 1544 
orthophoric 2567 meds 13694 {redacted, zip code} 1200  

Fig. 3. Clusters of Word Embeddings Projected onto the First Two Principal Components. 
Legend: The 10 closest words in embedding space to poag (blue), orbit (red), and guttae (green) are projected into the first two principal components of the embedding 
space for A) EHR embeddings and B) PubMed embeddings. In both panels, terms from these different ophthalmology subspecialties cluster appropriately in different 
areas of embedding space. Words are similar between the two sets of embeddings, although PubMed words closest to guttae contain more words often used to describe 
diseased corneal endothelial cells in the scientific literature (polymegathism, polygonal) rather than in clinical use (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.). 
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included. The full set of ophthalmology domain-specific analogies is also 
included for reuse. Finally, code for training the deep learning algorithm 
to predict visual prognosis is also included in the repository. 

3. Results 

3.1. Word embedding vocabulary 

There were 41,630 unique words and 55,937 unique words that 
appeared with frequency ≥ 5 in the EHR and PubMed corpora, respec-
tively. A total of 4370 unique words appeared in the EHR corpus at least 
5 times which did not appear in GloVe, while a total of 20,894 unique 
words appeared in the EHR corpus a minimum of 5 times which did not 
appear in the PubMed embeddings at least 5 times. A total of 3354 

unique words that appeared in the EHR corpus at least 5 times were not 
in BioWordVec. The most common of these words along with their fre-
quency of appearance is summarized in Table 1. 

We used principal component analysis to project onto two di-
mensions the word embeddings for the 10 closest words clustered 
around three separate ophthalmology concepts (Fig. 3). For both EHR 
and PubMed embeddings, words embeddings close to poag included a 
variety of abbreviations for different forms of glaucoma; those close to 
orbit included anatomical structures near the orbit. In EHR embeddings, 
words close to guttae included other findings common in the cornea; in 
PubMed embeddings, words close to guttae included words often used to 
describe diseased corneal endothelial cells (“polymegathism”, “polyg-
onal”) and Fuch’s endothelial corneal dystrophy (“fecd”), which all 
result in the finding of guttae. 

Table 2 
Examples of Ophthalmology Domain-Specific Analogies.  

Relationship Word 1 Word 2 Word 3 Word 4 

Sister drugs within the same class dorzolamide brinzolamide bromfenac ketorolac 
Anatomical locations and their adjectives limbus limbal canthus canthal 
Diseases and their affected anatomy ocp conjunctiva pseudoexfoliation lens 
Anatomical locations and inflammatory conditions at that location uvea uveitis choroid choroiditis 
Antonyms photopic scotopic light dark 
Laterality left right os od 
Drugs and the disease they treat brinzolamide glaucoma bevacizumab amd 
Anatomical locations and procedures performed at that location sclera sclerotomy iris iridotomy  

Fig. 4. Example Ophthalmology-Specific 
Analogy Test Question in Embedding Space. 
Legend: An example analogy question (ocp: 
conjunctiva::pseudoexfoliation::???) is depicted 
in a two-dimensional principal component 
projection of word embedding space. The cor-
rect word for analogy completion is lens, 
whereas the randomly chosen incorrect word is 
neuritis. Cosine similarity is calculated between 
(pseudoexfoliation - ocp + conjunctiva) and 
either lens or neuritis and the closer word in 
embedding space is chosen as the answer. In 
this example, (A) PubMed, (B) EHR, and (C) 
BioWordVec word embeddings identify the 
correct answer while (D) GloVe chooses the 
wrong answer.   
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3.2. Novel ophthalmology domain-specific analogies 

We created a novel set of 200 ophthalmology-related analogies to 
evaluate the intrinsic performance of these word embeddings on an 
ophthalmology-specific task. Examples of analogies are shown in 
Table 2, with the full set publicly available [19]. On analogy testing, 
PubMed WEs scored 95.0 % accuracy, outperforming EHR (86.0 %) and 
GloVe (91.0 %). BioWordVec WEs scored 99.5 % accuracy, out-
performing all other embeddings. An example analogy with correct and 
incorrect answer choices is depicted in embedding spaces in Fig. 4. 

3.3. Extrinsic evaluation: predicting low vision prognosis in electronic 
health records using word embeddings 

To compare the results of using different types of word embeddings 
on an extrinsic evaluation task, we developed deep learning models to 
predict visual prognosis using clinical progress notes from EHR. Words 
from free text clinical progress notes for a cohort of low vision patients 
were mapped to either PubMed, EHR, BioWordVec, or GloVe word 
embeddings and used as inputs to a deep learning model to predict 
whether patients would still have poor vision after 1 year of follow-up. 
Using PubMed and EHR WEs resulted in similar AUROC (0.830; 0.826), 
outperforming GloVe (0.778) and BioWordVec (0.784). Receiver oper-
ating and precision recall curves are depicted in Fig. 5. Additional per-
formance metrics at the classification probability threshold of 50 % are 
shown in Table 3. 

4. Discussion 

Predicting the prognosis of visual impairment is a challenge in 
ophthalmology and the lack of ophthalmology-specific embeddings may 
contribute to this challenge. In this study, we trained ophthalmology- 
specific embeddings using EHR and PubMed text corpora. We found 

that EHR and PubMed embeddings perform similarly, yet better than 
more general word embeddings on an extrinsic evaluation with an 
ophthalmology-specific clinical predictive task using EHR free-text 
progress notes. Using only clinical progress notes as inputs, deep 
learning models using ophthalmology-specific embeddings were able to 
perform with relatively good AUROC (>0.80) to predict the prognosis of 
visually impaired patients in a held-out test set, indicating that this may 
be a promising approach to using ophthalmology clinical notes for 
clinical predictive tasks. 

For formal intrinsic comparison of ophthalmology domain-specific 
embeddings to general embeddings, we developed a novel ophthal-
mology domain-specific analogy test [19]. An advantage of using anal-
ogies to evaluate embeddings is that evaluation is easy to perform, not 
computationally intensive, and does not require the curation and la-
beling of a dataset for a specific downstream clinical task. Because the 
corpus of all biomedical terms is vast, and the proportion of 
ophthalmology-related words is relatively small, previous approaches in 
developing general biomedical domain analogies [18,22] using word 
pairs from general biomedical ontologies was not an appropriate 
method of evaluating embeddings created specifically for 
ophthalmology-related tasks. In addition, programmatically matching 
word pairs to create analogies more than occasionally created analogies 
which were semantically invalid. For example, in one prior set of 
biomedical analogies, BMASS, left lower eyelid:right lower eyelid::olfactory 
sulcus:gingival margin is given as an analogy pair, even though olfactory 
sulcus and gingival margin are structures in the brain and in the mouth, 
respectively, and do not share a right:left relationship [22]. Many similar 
mismatched word pairs were found upon manual inspection, which led 
to the creation of our novel set of ophthalmology domain-specific 
analogies, which were all hand-curated and semantically valid. Re-
searchers wishing to evaluate neural word embeddings specific to a 
particular biomedical domain may also need to develop novel sets of 
analogies for appropriate testing. 

In our ophthalmology analogy set, GloVe general embeddings per-
formed surprisingly well with 91.0 % accuracy, outperforming EHR 
analogies at (86.0 %) accuracy. One reason for this may be that all words 
in the analogy set were limited to vocabulary which was present in all 
sets of embeddings. We found that while many words in the EHR vo-
cabulary were missing from both GloVe and PubMed embeddings, the 
most common words missing from GloVe covered important clinical 
concepts, findings, and tests, whereas the most common words missing 
from PubMed were less clinically relevant, including more social words 
like “dear”, “thank”, and “sincerely”. Since analogies had to utilize 
words common to all vocabulary sets, the highly specialized vocabulary 
present in the EHR and PubMed which is not covered by GloVe was not 
tested in the analogies, so the advantages of EHR and PubMed 

Fig. 5. Receiver Operating and Precision-Recall Curves for Prediction of Low Vision Prognosis. 
Legend: (A) Receiver operating and (B) precision-recall curves are shown for deep learning models predicting low vision prognosis which use as inputs free text 
clinical notes mapped to either more general GloVe or BioWordVec word embeddings, or custom ophthalmology-domain embeddings trained on either PubMed 
ophthalmology abstracts or ophthalmology clinical free text notes from the electronic health records (EHR). Ophthalmologist prediction performance is shown as a 
single point. 

Table 3 
Performance Metrics for Prediction of Visual Prognosis Using Various Word 
Embeddings.   

Pubmed EHR BioWordVec GloVe Ophthalmologist 

F1 0.73 0.72 0.63 0.65 0.59 
Sensitivity 

(Recall) 
0.76 0.77 0.59 0.74 0.69 

Specificity 0.78 0.76 0.82 0.63 0.49 
PPV (Precision) 0.70 0.68 0.69 0.58 0.52 
NPV 0.82 0.82 0.74 0.78 0.67 
Accuracy 0.77 0.76 0.72 0.68 0.58  
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embeddings in greater vocabulary coverage is not reflected in their 
performance on the analogy test. Thus, differences in vocabulary 
coverage between different sets of word embeddings must be considered 
when creating analogy tests, and represents a limitation to their usage as 
evaluation tools for domain-specific word embeddings. In addition, we 
found that BioWordVec embeddings actually outperformed all other 
embeddings on the analogy test, with near-perfect performance. This 
may be due to the fact that BioWordVec embeddings were trained on an 
enormous corpus including all PubMed biomedical literature, a superset 
of the PubMed ophthalmology literature used to train our own 
ophthalmology-specific domains. 

A unique strength of this study was that we also extrinsically eval-
uated ophthalmology domain-specific word embeddings on a novel 
clinical task of predicting the visual prognosis of low vision patients 
using free text clinical notes from the EHR. Many previous studies 
evaluating medical domain word embeddings use a specific intermedi-
ate NLP task, such as named entity recognition, rather than directly on a 
downstream clinical prediction task, which is an important step for 
assessing likelihood of success for model deployment [23–27]. Specif-
ically, we were able to predict using free-text EHR notes which visually 
impaired patients would still be visually impaired one year later, despite 
ongoing follow-up and treatment, with predictions that substantially 
outperform a human ophthalmologist with access to the same clinical 
notes. In the clinical setting, it is important to identify these patients 
who may most benefit from automated referrals to low vision rehabili-
tation services. Rather than waiting to observe the effects of treatment 
before referring to low vision services, an early referral based on pre-
dicted prognosis would result in earlier benefits to patients in their 
quality of life [6]. To our knowledge, there has been no previous work 
developing machine learning models to predict the visual prognosis for 
low vision patients, likely due to the lack of a ability to incorporate 
free-text information, such as afforded by the use of ophthalmology 
domain-specific word embeddings. Most previous work developing 
machine learning models in the domain of ophthalmology use imaging 
data or structured clinical data for classification, diagnosis, and pre-
diction of future outcomes. This includes work predicting progression on 
visual field testing using imaging data [1,3,28,29], and work predicting 
glaucoma progression to surgery using structured EHR data [2]. Our 
method of incorporating ophthalmology free-text notes into deep 
learning models by using ophthalmology domain-specific word em-
beddings results in good performance in predicting clinical outcomes. 
We found that using domain-specific word embeddings resulted in 
substantial improvements in model performance compared to more 
general word embeddings, which suggests that training domain-specific 
word embeddings should be the default approach when planning to use 
word embeddings to represent highly specialized domain-specific text. 

Our approach to developing domain-specific word embeddings and 
analogy evaluations can serve as an example for those working in other 
subspecialties with their own highly specialized terminologies, such as 
obstetrics, neurology, and others, who may wish to boost performance of 
predictive models by using free text note input features. The pre-trained 
ophthalmology word embeddings that we have made available can have 
broad applicability and can be easily used to incorporate EHR free text 
notes into predictive models for a wide variety of ophthalmology pre-
diction tasks. Furthermore, an advantage of using domain-specific em-
beddings is that loading and computing over them is likely to require 
fewer computational resources, owing to their significantly smaller vo-
cabulary (and thus file size) compared to more general vectors. Future 
refinements to ophthalmology domain-specific word representations 
can also make use of the novel analogies for benchmarking. 

Our approach has several limitations. Word embeddings could only 
be developed for single words, which does not cover concepts spanning 
multiple words. Therefore, abbreviations like “amd” would have one 
embedding vector, whereas the corresponding “age-related macular 
degeneration” would have separate embeddings for each component 
word. Analogies were therefore limited also to single words, as well as to 

words that appeared in all three corpora. The EHRs and clinical notes 
used in this study were extracted from a single healthcare system, 
therefore it is possible that we capture local terms and concepts that may 
not be generalizable across other settings. Other systems may wish to 
train their own domain-specific embeddings on their own site-specific 
corpora for the best performance; alternatively, use of our publicly 
available PubMed-based embeddings could be a ready solution to those 
not wishing to train their own embeddings as these were trained on 
ophthalmology literature and would not be expected to exhibit site- 
specific variation. Additionally, due to our center being a tertiary 
ophthalmology referral center, a relatively high proportion of our pa-
tients have complex or severe eye problems that, while amenable to 
ongoing treatment, may never recover to a level of vision better than 20/ 
40. Thus, our dataset was fairly balanced, which may not be the case for 
cohorts of ophthalmology patients seen in other treatment settings. 
Furthermore, although we were able to predict the visual acuity prog-
nosis of for patients with reduced visual acuity, we recognize that 
qualifying for low vision services is not merely a question of visual 
acuity, but also depends on the presence of visual deficits which damage 
peripheral vision or create specific blind spots while preserving central 
acuity, as well as functional deficits. Thus, the potential pool of patients 
who would benefit from low vision rehabilitation services is likely to be 
larger than the patients we have identified. Future work to improve this 
model could include identifying these additional patients, combining 
the free-text unstructured data from clinical progress notes with the 
structured demographic, diagnosis, medication, and examination data 
available in the EHR, and experimenting with and the incorporation of 
the time dimension into predictive models [30,31]. 

We also recognize that in recent years, context-aware word embed-
dings such as those learned in transformer-based approaches [32–34] 
have grown more popular than embeddings in the style of GloVe or 
word2vec. These transformer-based models can operate on 
character-based subwords which can mitigate the issue of 
out-of-vocabulary words. Future work can experiment with tuning 
transformer-based models for the ophthalmology domain [33], and 
using multiple hierarchical levels of text representation, such as 
sub-word, paragraph, and/or document-level representations [35]. 
However, understanding how to customize word2vec type of embed-
dings is still valuable, as this approach is significantly simpler and 
computationally less intensive, both to train and to use in model 
deployment, where resources may be limited. Furthermore, 
transformer-based approaches with sequence architecture often have 
additional limitations, such as relatively short limits on the length of text 
inputs, slower training, and larger data requirements. 

In conclusion, we developed novel ophthalmology domain-specific 
word embeddings using publicly available PubMed ophthalmology 
literature abstracts as well as EHR ophthalmology notes. We evaluated 
their performance against more general word embeddings on a novel 
ophthalmology-specific analogy task as well as on a prediction task 
using free-text ophthalmology progress notes to predict the visual 
prognosis of low vision patients. We found that using ophthalmology 
domain-specific embeddings improved the predictions of deep learning 
models, suggesting that clinical prediction tasks using highly specialized 
free text from EHRs benefit from domain-specific word embeddings. Our 
publicly available ophthalmology word embeddings can be immediately 
and broadly used for other predictive tasks in ophthalmology using free 
text clinical progress notes, and our approach can be readily replicated 
for other subspecialties to improve the performance of other predictive 
models. 
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