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A B S T R A C T   

Introduction: Low vision rehabilitation improves quality-of-life for visually impaired patients, but referral rates 
fall short of national guidelines. Automatically identifying, from electronic health records (EHR), patients with 
poor visual prognosis could allow targeted referrals to low vision services. The purpose of this study was to build 
and evaluate deep learning models that integrate EHR data that is both structured and free-text to predict visual 
prognosis. 
Methods: We identified 5547 patients with low vision (defined as best documented visual acuity (VA) less than 
20/40) on ≥ 1 encounter from EHR from 2009 to 2018, with ≥ 1 year of follow-up from the earliest date of low 
vision, who did not improve to greater than 20/40 over 1 year. Ophthalmology notes on or prior to the index 
date were extracted. Structured data available from the EHR included demographics, billing and procedure 
codes, medications, and exam findings including VA, intraocular pressure, corneal thickness, and refraction. To 
predict whether low vision patients would still have low vision a year later, we developed and compared deep 
learning models that used structured inputs and free-text progress notes. We compared three different repre
sentations of progress notes, including 1) using previously developed ophthalmology domain-specific word 
embeddings, and representing medical concepts from notes as 2) named entities represented by one-hot vectors 
and 3) named entities represented as embeddings. Standard performance metrics including area under the 
receiver operating curve (AUROC) and F1 score were evaluated on a held-out test set. 
Results: Among the 5547 low vision patients in our cohort, 40.7% (N = 2258) never improved to better than 20/ 
40 over one year of follow-up. Our single-modality deep learning model based on structured inputs was able to 
predict low vision prognosis with AUROC of 80% and F1 score of 70%. Deep learning models utilizing named 
entity recognition achieved an AUROC of 79% and F1 score of 63%. Deep learning models further augmented 
with free-text inputs using domain-specific word embeddings, were able to achieve AUROC of 82% and F1 score 
of 69%, outperforming all single- and multiple-modality models representing text with biomedical concepts 
extracted through named entity recognition pipelines. 
Discussion: Free text progress notes within the EHR provide valuable information relevant to predicting patients’ 
visual prognosis. We observed that representing free-text using domain-specific word embeddings led to better 
performance than representing free-text using extracted named entities. The incorporation of domain-specific 
embeddings improved the performance over structured models, suggesting that domain-specific text represen
tations may be especially important to the performance of predictive models in highly subspecialized fields such 
as ophthalmology.   

1. Introduction 

Almost 1.5 million (3.5% of individuals over the age of 65) are 
visually impaired and estimated to be candidates for low vision services 
[1]. These services help patients navigate their daily activities to 

maximize the function of their remaining. Without low vision services, 
many patients are unable to read standard print or maintain safety and 
independence in their daily activities [1], suffering enormous reductions 
in quality of life [2], with increased risk of falls and fractures [3], 
depression and anxiety [4], and mortality [5]. Maximizing functional 
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vision is therefore a vital determinant of living and aging well [6]. 
Despite proven effectiveness in aiding patients in their activities of 

daily life [2,7], referral to low vision resources is greatly underutilized. 
Barriers to referral are multifactorial, including time constraints during 
appointments, and difficulty in predicting whether low vision patients 
might improve with treatment. Thus, there is a critical need to identify 
and educate patients who can benefit from low vision services, poten
tially in an automated manner, which may bypass the clinic-visit 
bottleneck and improve access to low vision services. If predictive al
gorithms could automatically identify patients from the electronic 
health record (EHR) with long-term poor vision, these algorithms could 
ultimately contribute to a clinical decision support system by offering 
targeted education and referrals to these critically important low vision 
services. 

In order to build algorithms that capture and leverage the wealth of 
data available, researchers have explored utilizing unstructured data in 
the EHR systems. Clinical narratives reflect the main form of commu
nication within healthcare, allowing providers to record richer and more 
personalized information. Because there is an immense wealth of data in 
clinical free text, there has been increasing interest in using natural 
language processing (NLP) to incorporate information from unstruc
tured text data in predictive models [8]. However, there has been little 
prior work incorporating clinical free text into predictive models spe
cifically for ophthalmic outcomes [9]. 

Previous work in our group explored using neural word embeddings 
as a method of representing clinical free text to predict low vision 
prognosis [10]. Using custom-trained ophthalmology domain-specific 
neural word embeddings, every word in the text is mapped to a vector 
which is then inputted into a deep learning model. These predictive 
models were able to achieve an AUROC of 81% for predicting low vision 
prognosis. An alternative representation of text involves named entity 
recognition (NER), where important concepts within the notes can be 
extracted and mapped to existing health ontologies, forming a feature 
set which can be used for prediction models [11–13]. The purpose of this 
study was to build and evaluate models to predict low vision prognosis 
by combining information from EHR in both structured and free-text 
formats, and comparing NER and neural word embeddings as poten
tial approaches for representing ophthalmology clinical free text. 

2. Methods 

2.1. Data source/study cohort 

This study has been approved by the Stanford Institutional Review 
Board. Using retrospective data (structured and free-text) from 2009 to 

2018 from the Stanford Clinical Data Warehouse [14], we previously 
identified all documented visual acuity measurements (N = 553,184) 
belonging to 88,692 unique adult patients [15]. The patients’ gender is 
determined by their health records, which are based on self-report and 
not necessarily on examination of body characteristics or genetic testing. 
Visual acuity measurements are available from labeled fields in the EHR, 
including measurements for distance, near, with refraction, with or 
without habitual glasses or contacts for either eye [15]. Low vision on a 
particular encounter date was defined as visual acuity worse than 20/40 
on all measurements documented for that encounter. 

In total there were 13,847 patients with at least one documented 
encounter with low vision. The first date of low vision was determined 
for each patient (hereafter referred to as the index date). We included 
patients with follow-up for at least one year from the index date (N =
5612). For these patients, we extracted all ophthalmology free-text 
clinical notes on or prior to the index date (N = 5547 patients with 
available notes), as shown in Fig. 1. 40.7% of these patients still had low 
vision one year later. 

2.2. Data pre-processing and feature engineering 

2.2.1. Structured inputs 
Structured features available from the research warehouse were 

processed either as boolean variables or as continuous numeric vari
ables. Boolean variables included demographic data, billing codes (ICD 
and CPT) indicating prior diagnoses and procedures, and current active 
medication usage. Continuous numeric variables included eye exam 
information for both eyes, summarized with high, low, most recent and 
mean values. To capture visual acuity, we calculated the logarithm of 
minimum angle of resolution from the best corrected visual acuity 
(BCVA logMAR). logMAR is recognized as the most reliable and 
discriminative visual acuity measurement [16]. All features with less 
than 1% variance were removed, and missing value indicator variables 
were created to indicate whether an individual clinical measurement 
was missing. In total there were 556 structured input features. 

2.2.2. Free-text clinical progress note inputs 
We identified and extracted all notes on or before the first date of low 

vision and combined all notes into one text file per patient. 
Pubmed Word Embeddings: All notes were lower-cased, tokenized, 

and had stopwords removed. See Supplementary Table A for more details. 
Words were mapped to 300-dimensional neural word embeddings 
customized for ophthalmology that were pre-trained on PubMed 
ophthalmology abstracts [10]. 

CLAMP Output Post-Processing: In parallel with the PubMed word 

Fig. 1. Cohort Selection Process. We started with 88,692 patients with documented visual acuity measurements, and only included patients who had at least one 
documented encounter with low vision worse than 20/40 and at least one-year follow-up (defined as greater than or equal to one visit with documented visual acuity 
measurement greater than or equal to 365 days from the index date) with free-text notes, ultimately resulting in 5,547 patients for our cohort. 
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embeddings, we evaluated the ability of the Clinical Language Annota
tion, Modeling and Processing (CLAMP) tool [17] to identify 
ophthalmology-specific terminology by using a subset of ophthalmology 
terms and notes from the cohort. CLAMP is a clinical NLP toolkit that is 
trained on a dataset of generic clinical notes, namely, the i2b2 2010 
challenge corpus. More validation details can be found in the supple
mentary materials. We then ran all notes through our customized NER 
pipeline (CLAMP) to identify the specific named entities as well as sec
tion headers, and conducted post-processing of these CLAMP outputs. 

We first processed the section headers to categorize the named en
tities. Next, we removed entities under the section headers of: allergy, 
attestation, instruction, consent, and family/social history. These en
tities are not relevant to the patient themselves, and present as incon
sistent data points. In addition to removing irrelevant entities, we also 
removed entities that were not mapped to a CUI, which were often 
unnecessary attributions of the named entities (drug dosage, body 
location, etc.). Thus, our final output from CLAMP per patient is a list of 
CUI’s with a negation marker. 

CUI One-Hot Encoding: As an input to our model, we created a one- 
hot encoding of the CUI’s, incorporating the negation by creating 
separate “terms” per CUI for the positive and negative occurrences of the 
entity. Similar to the structured inputs, features with less than 1% 
variance were removed, decreasing the vocabulary size of the CUI one- 
hot encoding from 22,164 to 1078. 

Cui2vec Embeddings: In addition to the baseline CUI one-hot 
encoding, we utilized the pretrained cui2vec word embeddings on the 
CLAMP output, which mapped CUI’s to 500-dimensional neural word 
embeddings [18]. Cui2vec is a comprehensive set of 108,477 clinical 
embeddings extracted from insurance claims, clinical notes, and 
biomedical journal articles [18]. Because cui2vec was not trained with 
negated terms, we removed all the negated entities from the output. 
Similar to before, features with less than 1% variance were removed, 
decreasing the input size from 4392 to 239. 

2.3. Modeling approach 

Overview: Eight models were constructed for comparison on pre
dicting whether a low vision patient would see an improvement in their 
vision within a one-year follow-up. These include 1) a structured model 
which relied upon only structured input features, 2) free-text models 
that utilized only free-text clinical notes as input features, and 3) com
bination models which utilized both sets of features. As seen in Fig. 2, we 
compared 2 different methods of extracting free text data- word 

embeddings and NER. Once we extracted the named entities, we 
explored one-hot encoding and a pre-trained embedding on CUI’s. We 
also explored a combination of the four single-modality models, as 
described in Table 1. More information can be found in the supple
mentary materials, including detailed descriptions of each model ar
chitecture and depictions of combination model architectures in 
Supplementary Figure A. All code for this project is publicly available 
[19]. 

All models were trained with hyperparameters and classification 
probability threshold tuned on a validation set to achieve optimal F1 
score. To extract parameters with the best performance, we conducted 
hyperparameter tuning on the number of units for the dense layer, the 
dropout rate for the dropout layers, and the optimal learning rate. 

2.4. Evaluation 

We used sensitivity (recall), specificity, positive predictive value 
(precision), negative predictive value, F1-score (the harmonic mean of 
recall and precision), area under the receiver operating characteristic 
curve (AUROC), and area under the precision recall curve (AUPRC), as 
our evaluation metrics. These are all evaluated on an independent held- 
out test set of 300 patients. The F1 score was determined by iterating 
through 0.05 increments of thresholds to arrive at the highest F1 scores 
for the model. We obtained the 95% confidence interval for these per
formance metrics by bootstrapping with 10,000 replicates. In addition to 
calculating standard AUROC and AUPRC metrics, we also created 
binormal smoothened ROC and PRC curves using the R package pROC 

Fig. 2. Overview of different model inputs. This figure depicts the different representations of the electronic health record data and their corresponding single- 
modality model architectures. Electronic health records (EHR) provided structured data as well as clinical free-text notes. The structured data were inputs to a fully 
connected (FC) deep neural network (Model A). Free-text notes were represented either with previously trained domain-specific word embeddings and modeled with 
a convolutional neural network (Model B), or processed through a biomedical named entity recognition pipeline (CLAMP) which mapped biomedical concepts to 
concept unique identifiers (CUIs) in the Unified Medical Language System. The CUIs were then represented either as one-hot vectors (Model C) or as cui2vec vectors 
in an embedding space (Model D), both modeled using fully connected deep neural networks. 

Table 1 
Description of Models Combining Different Representations of Clinical 
Free-Text with Structured Inputs. FC = Fully Connected neural network ar
chitecture; CNN = Convolutional Neural Network; CUI = Concept Unique 
Identifier; Cui2vec = representations of CUIs in an embedding space.  

Model Description Concatenation 
Method 

E FC Structured (Model A) + CNN Word Embedding 
(Model B) 

Late-Fusion 

F FC Structured (Model A) + FC CUI One-Hot (Model 
C) 

Early-Fusion 

G FC Structured (Model A) + FC CUI Cui2vec (Model 
D) 

Late-Fusion 

H FC Structured (Model A) + FC CUI Cui2vec (Model 
D) + FC Word Embedding 

Late-Fusion  
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[20]. This method produces a smooth curve, free from parametric as
sumptions, that can fit arbitrarily complex distributions [21]. 

3. Results 

Population characteristics are summarized in Table 2. 

3.1. CLAMP validation 

Upon validation, CLAMP was able to sufficiently extract relevant 
ophthalmology named entities from our clinical notes, resulting in high 
precision, recall, and F1 score greater than 80% as shown in Table 3. 
Based on these results, we proceeded with using CLAMP to extract 
named entities from our ophthalmology clinical notes. In addition, our 
CLAMP customization to detect ophthalmology note sections was able to 
identify the different sections in the clinical notes, resulting in high F1 
scores, as seen in Table 4. 

3.2. Model results 

Fig. 3 shows the receiver operating (ROC) and precision recall curves 
(PRC) on the held-out test set for the structured, text, and combination 
models. Supplementary Figure B shows the binormal smoothened ROC 
and PRC curves. The word embedding Model B had the best AUROC 
(0.819) followed by the combination Model E (0.817). For AUPRC, we 
can see that Model E had the best value (0.776) with Model B as a close 
second (0.776). Table 5 reports all performance metrics for each model, 
with 95% confidence intervals. 

4. Discussion 

In this study, we developed and evaluated deep learning predictive 
models for low vision prognosis, comparing several different approaches 
to integrating structured and unstructured free-text data from ophthal
mology electronic health records. We compared three different repre
sentations of ophthalmology clinical text, including 1) using previously 
developed ophthalmology domain-specific word embeddings, and rep
resenting medical concepts from notes as 2) named entities represented 
by one-hot vectors and 3) named entities represented by embedding 
vectors. We also validated and customized a biomedical NER pipeline 
(CLAMP) for ophthalmology notes and concepts. Word embedding 
models (Model B and E), the only ones that outperformed the single- 
modality model based on structured inputs, appeared to outperform 
NER models (Model C) on AUROC of 0.82 and 0.71 respectively. These 

models may ultimately form the basis of clinical decision support sys
tems to aid physicians in their workflow to refer patients to low-vision 
rehabilitation services. 

Our work represents efforts unique in the ophthalmology field to 
incorporate multimodal data types from electronic health records, 
including free-text data types, into predictive algorithms. Despite the 
increased interest in using machine learning techniques in ophthal
mology over the past few years [22], most studies have been focused on 

Table 2 
Population Characteristics. BCVA LogMAR = Logarithm of minimum angle of resolution from the best corrected visual acuity.    

Total 
N = 5547 

Vision Improved 
N = 3289 (59.5%) 

Vision Not Improved 
N = 2258 (40.7%)   

N Percent N Percent N Percent 

Gender Female 3193 57.5% 1901 57.8% 1292 57.2% 
Race Asian 1257 22.7% 811 24.7% 446 19.8% 

Black 218 3.9% 112 3.4% 106 4.7% 
Hispanic 983 17.7% 540 16.4% 443 19.6% 
White 2312 41.7% 1400 42.6% 912 40.4% 
Other 777 14.0% 426 12.9% 351 15.5% 

Ethnicity Non-Hispanic 4389 79.1% 2670 81.2% 1719 76.1% 
Hispanic/Latinx 983 17.7% 540 16.4% 443 19.6% 
Unknown 175 3.2% 79 2.4% 96 4.3%   

Mean Std Mean Std Mean Std  
Age (years) 67.5 20.3 67.9 18.4 67.0 22.7 

BCVA LogMAR Right Best 0.23 1.11 − 0.05 0.91 0.65 1.25 
Worst 0.53 1.10 0.37 1.00 0.77 1.19 
Median 0.34 1.10 0.10 0.94 0.69 1.22 

BCVA LogMAR Left Best 0.25 1.14 0.00 0.99 0.63 1.23 
Worst 0.56 1.13 0.43 1.07 0.75 1.19 
Median 0.36 1.12 0.14 1.00 0.67 1.21  

Table 3 
CLAMP Validation Results for Ophthalmology-specific Terminology. TP =
True Positive, FP = False Positive, FN = False Negative.  

Terms TP FP FN Total Precision Recall F1 

Cataract/Nuclear 
Sclerosis/ 
Cortical Clouding 

124 5 45 174 0.961 0.734 0.832 

Pseudophakia 
(posterior 
chamber 
intraocular lens) 

22 0 35 57 1 0.386 0.557 

Corneal edema 7 0 3 10 1 0.700 0.824 
Diabetic 

retinopathy 
19 0 0 19 1 1 1 

Glaucoma 74 2 10 86 0.974 0.881 0.925 
Macular 

degeneration 
62 0 5 67 1 0.925 0.961 

Macular edema 33 0 4 37 1 0.892 0.943 
Retinal detachment 52 1 12 65 0.981 0.813 0.889 
Poor/low/blurred/ 

decreased/ 
impaired vision; 
blindness 

128 1 9 138 0.992 0.934 0.962 

Eye pain 53 0 2 55 1 0.964 0.981 
Optical coherence 

tomography 
1 0 37 38 1 0.026 0.051 

Slit Lamp 8 0 7 15 1 0.533 0.696 
Avastin/ 

Bevacizumab 
15 0 0 15 1 1 1 

Brimonidine/ 
Alphagan 

26 0 4 30 1 0.867 0.929 

Latanoprost/ 
Xalatan 

22 0 3 25 1 0.880 0.936 

Timolol/Timoptic 20 0 1 21 1 0.952 0.976 
Keratoplasty 12 0 4 16 1 0.750 0.857 
Pars plana 

vitrectomy 
15 0 1 16 1 0.938 0.968 

Cataract surgery/ 
Cataract 
extraction 

39 0 6 45 1 0.867 0.929 

TOTAL 734 9 195 938 0.988 0.790 0.878  
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image interpretation [23]. There have been few studies that have 
incorporated electronic health records, and very limited studies that 
have predicted development of clinical eye diseases [24]. Lin et. al 

predicted myopia development in children using refraction data from 
the electronic health records [25], while Alexeeff et. al predicted visual 
acuity after cataract surgery [26]. Both of these studies utilized only 
structured data without input from the information-rich text in the 
electronic health records. Our study differs in incorporating multiple 
modalities of data from the electronic health record, including free-text 
as well as structured data. 

Prior works in other medical domains have noted the superiority of 
utilizing data fusion models that combine structured EHR data with 
representations of free-text through word embeddings and/or CUIs 
extracted by biomedical NER pipelines such as CLAMP [27]. However, it 
was unclear whether such approaches could work in the highly 
specialized domain of ophthalmology. We first showed that CLAMP, a 
biomedical NER tool that was trained on general clinical notes, was able 
to extract relevant terms from ophthalmology notes and map them to the 
corresponding CUI’s. We found that the total F1 score for a selection of 
common ophthalmology-specific terms was 0.88. We already know, 
from prior works, that CLAMP’s ability to capture general medical fea
tures allows it to be a starting point for feature extraction from free-text. 
But through our validation here, we further suggest that CLAMP may 
also be appropriate for use on ophthalmology notes. 

However, in our models predicting low vision outcomes, we 
observed that representing free-text using domain-specific word em
beddings (Models B and E) still led to better performance than repre
senting free-text using CLAMP-extracted named entities mapped to CUIs 
(Models C and D). Adding CUI’s to the structured data model (Models F 

Table 4 
CLAMP Validation Results for Free-Text Clinical Note Sections. TP = True 
Positive, FP = False Positive, FN = False Negative.  

Category TP FP FN Total Precision Recall F1 

*Allergy 50 0 0 50 1 1 1 
Assessment and 

Plan 
122 5 14 141 0.961 0.897 0.928 

*Attestation 11 0 0 11 1 1 1 
Chief 

Complaint/ 
History of 
Present Illness 

122 0 1 123 1 0.992 0.999 

*Consent 18 0 0 18 1 1 1 
Exam 194 28 3 225 0.874 0.985 0.9269 
*Family and 

Social History 
153 49 0 202 0.757 1 0.862 

History 143 25 6 174 0.851 0.960 0.902 
*Instruction 19 0 0 19 1 1 1 
Interpretation 17 1 0 18 0.944 1 0.971 
Medication 117 10 1 128 0.921 0.992 0.955 
Review of 

Systems 
84 0 0 84 1 1 1 

TOTAL 1050 118 25 1193 0.899 0.977 0.936  

* Sections that were deleted during pre-processing of CLAMP outputs. 

Fig. 3. Receiver Operating Curve (ROC) and Precision Recall Curves (PRC) for Predictive Models. These figures reveal the ROC and PRC curves, as well as the 
area under the curves. The red line in the ROC curve reflects the points at which true positive rates equal true negative rates, which is only as good as a random 
classifier. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 5 
Performance metrics for deep learning models in predicting low vision prognosis. Bolded values reflect the best value for that performance metric. Values in 
parentheses are 95% confidence intervals. Threshold values reflect the threshold that was chosen to generate the F1 scores, precision, and recall.  

Value (95% Confidence 
Interval) 

AUROC AUPRC F1 Sensitivity 
(Recall) 

Specificity PPV 
(Precision) 

NPV Accuracy Threshold 

(A) Structured Model 0.80 
(0.75–0.85) 

0.73 
(0.64–0.81) 

0.70 
(0.61–0.74) 

0.73 
(0.62–0.78) 

0.76 
(0.68–0.81) 

0.68 
(0.57–0.74) 

0.80 
(0.72–0.84) 

0.73 
(0.68–0.78)  

0.40 

(B) CNN Word Embedding 
Text Model 

0.82 
(0.77–0.87) 

0.78 
(0.70–0.84) 

0.67 
(0.60–0.74) 

0.67 
(0.60–0.76) 

0.77 
(0.70–0.83) 

0.67 
(0.59–0.75) 

0.77 
(0.71–0.83) 

0.74 
(0.68–0.78)  

0.45 

(C) CUI One-Hot Text Model 0.71 
(0.65–0.76) 

0.62 
(0.53–0.70) 

0.64 
(0.57–0.70) 

0.79 
(0.71–0.86) 

0.52 
(0.45–0.59) 

0.53  

(0.46–0.60) 

0.78 
(0.70–0.85) 

0.66 
(0.57–0.68)  

0.35 

(D) CUI Cui2vec Text Model 0.66 
(0.59–0.72) 

0.52 
(0.43–0.62) 

0.58 
(0.51–0.64) 

0.80 
(0.72–0.87) 

0.42 
(0.35–0.49) 

0.45 
(0.38–0.52) 

0.77 
(0.69–0.85) 

0.65 
(0.50–0.62)  

0.20 

(E) A + B Combined Model 0.82 
(0.76–0.87) 

0.79 
(0.72–0.85) 

0.69 
(0.63–0.75) 

0.79 
(0.71–0.86) 

0.66 
(0.58–0.72) 

0.61 
(0.54–0.69) 

0.82 
(0.75–0.88) 

0.74 
(0.66–0.76)  

0.35 

(F) A + C Combined Model 0.79 
(0.73–0.83) 

0.73 
(0.64–0.80) 

0.63 
(0.56–0.70) 

0.64 
(0.56–0.73) 

0.73 
(0.67–0.80) 

0.63 
(0.54–0.71) 

0.75 
(0.68–0.81) 

0.73 
(0.64–0.75)  

0.40 

(G) A + D Combined Model 0.79 
(0.73–0.84) 

0.75 
(0.68–0.82) 

0.67 
(0.59–0.74) 

0.66 
(0.57–0.75) 

0.80 
(0.74–0.86) 

0.67 
(0.58–0.76) 

0.80 
(0.74–0.85) 

0.77 
(0.70–0.80)  

0.45 

(H) A + D + FC Word 
Embedding Model 

0.79 
(0.73–0.84) 

0.75 
(0.67–0.82) 

0.66 
(0.59–0.73) 

0.66 
(0.57–0.75) 

0.79 
(0.73–0.85) 

0.66 
(0.57–0.74) 

0.80 
(0.74–0.85) 

0.76 
(0.69–0.79)  

0.45 

PPV = Positive Predictive Value. NPV = Negative Predictive Value. 
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and G) did not appear to significantly improve the performance. One 
explanation is possible overlap of information between CUI’s and 
structured data. Both our structured data and our NER pipeline extracted 
concepts including medications and procedures, resulting in possible 
redundancy of data. Another explanation may relate to use of the pre
trained cui2vec [18] to translate CUI’s into vectorized embeddings. 
Because cui2vec was trained on the general medical domain and not on 
ophthalmology-specific text, we found that 51.5% of the identified CUI’s 
from our text were not represented in cui2vec, which may have 
decreased the performance of the cui2vec text representation model. 
Wang et. al used a similar approach with cui2vec embeddings to predict 
distant recurrence of breast cancer, achieving an AUROC of 0.84 [27], 
which is somewhat higher than the AUROC of 0.79 from our combined 
Model H (structured + cui2vec embedding + word embedding). Incor
porating text representation using ophthalmology domain-specific em
beddings [10] did improve performance over the structured model, 
suggesting that domain-specific text representations may be especially 
important to the performance of highly domain specific ophthalmology 
predictive models. Future work to improve the cui2vec approach could 
include training domain-specific CUI embeddings to improve CUI 
coverage. These approaches could be combined with CLAMP to augment 
ophthalmology-specific features with general medical terms. Re
searchers in other highly specialized medical subdomains who wish to 
incorporate clinical free-text into predictive models may also wish to 
develop more domain-specific representations of their text. 

Even though this iteration of representing free-text using NER did not 
outperform word embeddings, there is still value in further developing 
this approach. Extraction of important concepts from medical notes is 
inherently more interpretable than mapping notes to word embeddings. 
We can determine which types of diagnoses, treatments, and findings 
the predictive models rely upon through the types of entities extracted 
and inputted into the models. Future work could focus more formally on 
explainability studies, using local interpretable model-agnostic expla
nations (LIME) [28,29] to determine which model features helped 
contribute to the predictions. Understanding how to perform explain
ability studies for complex combination models with multiple data 
modalities is an area of active research in the field. These studies not 
only would provide additional insights into the medical context sur
rounding low vision prognosis, but also would increase interpretability 
of the results, increasing clinician’s trust in these models [30–32]. 

Another approach to representation of free text that has grown in 
popularity recently is the use of context-aware word embeddings 
learned in transformer-based approaches [30–32]. Future work can 
experiment with tuning transformer-based models for the ophthal
mology domain [31], and using multiple hierarchical levels of text 
representation [33]. Despite these newer advances in NLP, under
standing how to utilize and customize NER and word embeddings for 
ophthalmology is still valuable, as these simpler and less computation
ally intensive approaches might not be outperformed by transformer- 
based approaches. In addition, NER and word embedding approaches 
do not have the additional limitations that are present with transformer- 
based approaches such as slower training, larger data requirements, and 
shorter limits on lengths of text inputs. 

There are several limitations to our study. Our study cohort is from a 
single academic center, which limits the variability and composition of 
the patients and notes. This cohort included very few patients identi
fying as American Indian/Alaska Native or Native Hawaiian/Pacific 
Islander; the patients’ gender is documented only as male and female, 
which does not cover the non-binary spectrum. Future works could 
explore conducting sub-analyses on race and gender. In addition, NER is 
a high-level NLP task that often faces challenges with clinical data, 
arising from variations in word and phrase ordering, derivation, syn
onymy, etc. [34]. Ophthalmology written notes tend to harbor many 
abbreviations that often represent different terms in different fields. 
CLAMP was able to recognize some abbreviations, but missed others, 
which led us to remove all abbreviations from the CLAMP pipeline. This 

could have resulted in under-capture of some information, which may 
have contributed to the suboptimal model performance. 

5. Conclusion 

In conclusion, we developed and compared models predicting low 
vision prognosis which combined multiple modalities of data (struc
tured and free-text) from electronic health records. In addition to 
exploring different representations of ophthalmology clinical text, we 
validated CLAMP’s named entity recognition on ophthalmology-specific 
terminologies. We ultimately showed that models incorporating text 
represented by domain-specific word embeddings outperformed the 
single-modality model using structured inputs and outperformed all 
single- and multiple-modality models representing text with biomedical 
concepts extracted through NER pipelines. This study is a first step to
wards development of models using multiple modalities of data to pre
dict ophthalmology outcomes. Researchers in other highly specialized 
biomedical domains may wish to carefully consider how to incorporate 
free-text into predictive models and favor domain-specific representa
tions of text for best performance. 
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8. Summary Table   

• What was already known: 
Structured data from ophthalmology electronic health records have been used to 

successfully predict biomedical outcomes. 
We have previously shown that representing ophthalmology clinical notes using 

domain-specific word embeddings leads to predictive models for low vision out
comes that are superior to those using general domain word embeddings. 

Works in other medical domains have noted the superiority of utilizing combi
nation or “data fusion” models that combine structured EHR data with represen
tations of free-text through word embeddings and/or CUIs extracted by biomedical 
named entity recognition pipelines.  

• What this study added: 
We demonstrated multiple ways to combine structured data and free text notes in 

combination models to predict low vision outcomes and are the first to build these 
“data fusion” models in ophthalmology. 

We found that domain-specific representations of clinical text through neural 
word embeddings resulted in better performing predictive models compared to the 
more general approach of representing text through extraction of biomedical con
cepts. 

We customized and validated a biomedical named entity recognition pipeline for 
ophthalmology to facilitate future natural language processing research in this field.  

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijmedinf.2021.104678. 
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