Tag: ARM

  • RISC-V in Computers

    One of the most exciting technological developments from the semiconductor side of things is the rapid development of the ecosystem around the open-source RISC-V instruction set architecture (ISA). One landmark in its rise is that the architecture appears to be moving beyond just behind-the-scenes projects to challenging Intel/AMD’s x86 architecture and ARM (used by Apple and Qualcomm) in customer-facing applications.

    This article highlights this crucial development by reporting on early adopters embracing RISC-V to move into higher-end devices like laptops. Companies like Framework and DeepComputing have just launched or are planning to launch RISC-V laptops. While RISC-V-powered hardware still have a steep mountain to climb of software and performance challenges (as evidenced by the amount of time it’s taken for the ARM ecosystem to be credible in PCs), Intel’s recent setbacks and ARM’s legal battles with Qualcomm over licensing (pretty much guaranteeing every company that uses ARM is now going to work on RISC-V) coupled with the open source nature of RISC-V potentially allowing for a lot more innovation in form factors and functionality may have created an opening here for enterprising companies willing to make the investment.


    This Year, RISC-V Laptops Really Arrive
    Matthew S. Smith | IEEE Spectrum

  • Good Windows on ARM at last?

    Silicon nerd 🤓 that I am, I have gone through multiple cycles of excited-then-disappointed for Windows-on-ARM, especially considering the success of ChromeOS with ARM, the Apple M1/M2 (Apple’s own ARM silicon which now powers its laptops), and AWS Graviton (Amazon’s own ARM chip for its cloud computing services).

    I may just be setting myself up for disappointment here but these (admittedly vendor-provided) specs for their new Snapdragon X (based on technology they acquired from Nuvia and are currently being sued for by ARM) look very impressive. Biased as they may be, the fact that these chips are performing in the same performance range as Intel/AMD/Apple’s silicon on single-threaded benchmarks (not to mention the multi-threaded applications which work well with the Snapdragon X’s 12 cores) hopefully bodes well for the state of CPU competition in the PC market!

    Single-threaded CPU performance (Config A is a high performance tuned offering, Config B is a “thin & light” configuration)
    Multi-threaded CPU performance (Config A is a high performance tuned offering, Config B is a “thin & light” configuration)

    Qualcomm Snapdragon X Elite Performance Preview: A First Look at What’s to Come
    Ryan Smith | Anandtech