Categories
Uncategorized

Mosquitoes are Drawn to Your Skin Bacteria

This month’s paper (from open access journal PLoS ONE) is yet again about the impact on our health of the bacteria which have decided to call our bodies home. But, instead of the bacteria living in our gut, this month is about the bacteria which live on our skin.

It’s been known that the bacteria that live on our skin help give us our particular odors. So, the researchers wondered if the mosquitos responsible for passing malaria (Anopheles) were more or less drawn to different individuals based on the scent that our skin-borne bacteria impart upon us (also, for the record, before you freak out about bacteria on your skin, remember that like the bacteria in your gut, the bacteria on your skin are natural and play a key role in maintaining the health of your skin).

Looking at 48 individuals, they noticed a huge variation in terms of attractiveness to Anopheles mosquitos (measured by seeing how much mosquitos prefer to fly towards a chamber with a particular individual’s skin extract versus a control) which they were able to trace to two things. The first is the amount of bacteria on your skin. As shown in Figure 2 below, is that the more bacteria that you have on your skin (the higher your “log bacterial density”), the more attractive you seem to be to mosquitos (the higher your mean relative attractiveness).

Source: Figure 2, Verhulst et al

The second thing they noticed was that the type of bacteria also seemed to be correlated with attractiveness to mosquitos. Using DNA sequencing technology, they were able to get a mini-census of what sort of bacteria were present on the skins of the different patients. Sadly, they didn’t show any pretty figures for the analysis they conducted on two common types of bacteria (Staphylococcus and Pseudomonas), but, to quote from the paper:

The abundance of Staphylococcus spp. was 2.62 times higher in the HA [Highly Attractive to mosquitoes] group than in the PA [Poorly Attractive to mosquitoes] group and the abundance of Pseudomonas spp. 3.11 times higher in the PA group than in the HA group.

Using further genetic analyses, they were also able to show a number of other types of bacteria that were correlated with one or the other.

So, what did I think? While I think there’s a lot of interesting data here, I think the story could’ve been tighter. First and foremost, for obvious reasons, correlation does not mean causation. This was not a true controlled experiment – we don’t know for a fact if more/specific types of bacteria cause mosquitos to be drawn to them or if there’s something else that explains both the amount/type of bacteria and the attractiveness of an individual’s skin scent to a mosquito. Secondly, Figure 2 leaves much to be desired in terms of establishing a strong trendline. Yes, if I  squint (and ignore their very leading trendline) I can see a positive correlation – but truth be told, the scatterplot looks like a giant mess, especially if you include the red squares that go with “Not HA or PA”. For a future study, I think it’d be great if they could get around this to show stronger causation with direct experimentation (i.e. extracting the odorants from Staphylococcus and/or Pseudomonas and adding them to a “clean” skin sample, etc)

With that said, I have to applaud the researchers for tackling a fascinating topic by taking a very different angle. Coverage of malaria is usually focused on how to directly kill or impede the parasite (Plasmodium falciparums). This is the first treatment of the “ecology” of malaria – specifically the ecology of the bacteria on your skin! While the authors don’t promise a “cure for malaria”, you can tell they are excited about what they’ve found and the potential to find ways other than killing parasites/mosquitos to help deal with malaria, and I look forward to seeing the other ways that our skin bacteria impact our lives.

Paper: Verhulst et al. “Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes.” PLoS ONE 6(12). 17 Nov 2011. doi:10.1371/journal.pone.0028991

Check out my other academic paper walkthroughs/summaries

Categories
Uncategorized

Fat Flora

Source: Healthy Soul

November’s paper was published in Nature in 2006, and covers a topic I’ve become increasingly interested in: the impact of the bacteria that have colonized our bodies on our health (something I’ve blogged about here and here).

The idea that our bodies are, in some ways, more bacteria than human (there are 10x more gut bacteria – or flora — than human cells on our bodies) and that those bacteria can play a key role on our health is not only mind-blowing, it opens up another potential area for medical/life sciences research and future medicines/treatments.

In the paper, a genetics team from Washington University in St. Louis explored a very basic question: are the gut bacteria from obese individuals different from those from non-obese individuals? To study the question, they performed two types of analyses on a set of mice with a genetic defect leading to an inability of the mice to “feel full” (and hence likely to become obese) and genetically similar mice lacking that defect (the s0-called “wild type” control).

The first was a series of genetic experiments comparing the bacteria found within the gut of obese mice with those from the gut of “wild-type” mice (this sort of comparison is something the field calls metagenomics). In doing so, the researchers noticed a number of key differences in the “genetic fingerprint” of the two sets of gut bacteria, especially in the genes involved in metabolism.

Source: Figure 3, Turnbaugh et al.

But, what did that mean to the overall health of the animal? To answer that question, the researchers did a number of experiments, two of which I will talk about below. First, they did a very simple chemical analysis (see figure 3b to the left) comparing the “leftover energy” in the waste (aka poop) of the obese mice to the waste of wild-type mice (and, yes, all of this was controlled for the amount of waste/poop). Lo and behold, the obese mice (the white bar) seemed to have gut bacteria which were significantly better at pulling calories out of the food, leaving less “leftover energy”.

Source: Figure 3, Turnbaugh et al.

While an interesting result, especially when thinking about some of the causes and effects of obesity, a skeptic might look at that data and say that its inconclusive about the role of gut bacteria in obesity – after all, obese mice could have all sorts of other changes which make them more efficient at pulling energy out of food. To address that, the researchers did a very elegant experiment involving fecal transplant: that’s right, colonize one mouse with the bacteria from another mouse (by transferring poop). The figure to the right (figure 3c) shows the results of the experiment. After two weeks, despite starting out at about the same weight and eating similar amounts of the same food, wild type mice that received bacteria from other wild type mice showed an increase in body fat of about 27%, whereas the wild type mice that received bacteria from the obese mice showed an increase of about 47%! Clearly, gut bacteria in obese mice are playing a key role in calorie uptake!

In terms of areas of improvement, my main complaint about this study is just that it doesn’t go far enough. The paper never gets too deep on what exactly were the bacteria in each sample and we didn’t really get a sense of the real variation: how much do bacteria vary from mouse to mouse? Is it the completely different bacteria? Is it the same bacteria but different numbers? Is it the same bacteria but they’re each functioning differently? Do two obese mice have the same bacteria? What about a mouse that isn’t quite obese but not quite wild-type either? Furthermore, the paper doesn’t show us what happens if an obese mouse has its bacteria replaced with the bacteria from a wild-type mouse. These are all interesting questions that would really help researchers and doctors understand what is happening.

But, despite all of that, this was a very interesting finding and has major implications for doctors and researchers in thinking about how our complicated flora impact and are impacted by our health.

Paper: Turnbaugh et al., “An obesity-associated gut microbiome with increased capacity for energy harvest.” Nature (444). 21/28 Dec 2006. doi:10.1038/nature05414

Check out my other academic paper walkthroughs/summaries

Categories
Uncategorized

Do You Have the Guts for Nori?

Source: Precision Nutrition

The paper I will talk about this month is from April of this year and highlights the diversity of our “gut flora” (a pleasant way to describe the many bacteria which live in our digestive tract and help us digest the food we eat). Specifically, this paper highlights how a particular bacteria in the digestive tracts of some Japanese individuals has picked up a unique ability to digest certain certain sugars which are common in marine plants (e.g., Porphyra, the seaweed used to make sushi) but not in terrestrial plants.

Interestingly, the researchers weren’t originally focused on how gut flora function at all, but in understanding how marine bacteria digested marine plants. They started by studying a particular marine bacteria, Zobellia galactanivorans which was known for its ability to digest certain types of algae. Scanning the genome of Zobellia, the researchers were able to identify a few genes which were similar enough to known sugar-digesting enzymes but didn’t seem to have the ability to act on the “usual plant sugars”.

Two of the identified genes, which they called PorA and PorB, were found to be very selective in the type of plant sugar they digested. In the chart below (from Figure 1), 3 different plants are characterized along a spectrum showing if they have more LA (4-linked 3,6-anhydro-a-L-galactopyranose) chemical groups (red) or L6S (4-linked a-L-galactopyranose-6-sulphate) groups (yellow). Panel b on the right shows the H1-NMR spectrum associated with these different sugar mixes and is a chemical technique to verify what sort of sugar groups are present.

Source: Figure 1, Hehemann et al.

These mixes were subjected to PorA and PorB as well as AgaA (a sugar-digesting enzyme which works mainly on LA-type sugars like agarose). The bar charts in the middle show how active the respective enzymes were (as indicated by the amount of plant sugar digested).

As you can see, PorA and PorB are only effective on L6S-type sugar groups, and not LA-type sugar groups. The researchers wondered if they had discovered the key class of enzyme responsible for allowing marine life to digest marine plant sugars and scanned other genomes for other enzymes similar to PorA and PorB. What they found was very interesting

Source: Figure 3, Hehemann et al.

What you see above is an evolutionary family tree for PorA/PorB-like genes. The red and blue boxes represent PorA/PorB-like genes which target “usual plant sugars”, but the yellow show the enzymes which specifically target the sugars found in nori (Porphyra, hence the enzymes are called porhyranases). All the enzymes marked with solid diamonds are actually found in Zgalactanivorans (and were henced dubbed PorC, PorD, and PorE – clearly not the most imaginative naming convention). The other identified genes, however, all belonged to marine bacteria… with the notable exception of Bateroides plebeius, marked with a open circle. And Bacteroides plebeius (at least to the knowledge of the researchers at the time of this publication) has only been found in the guts of certain Japanese people!

The researchers scanned the Bacteroides plebeius genome and found that the bacteria actually had a sizable chunk of genetic material which were a much better match for marine bacteria than other similar Bacteroides strains. The researchers concluded that the best explanation for this is that the Bacteroides plebeius picked up its unique ability to digest marine plants not on its own, but from marine bacteria (in a process called Horizontal Gene Transfer or HGT), most probably from bacteria that were present on dietary seaweed. Or, to put it more simply: your gut bacteria have the ability to “steal” genes/abilities from bacteria on the food we eat!

Cool! While this is a conclusion which we can probably never truly prove (it’s an informed hypothesis based on genetic evidence), this finding does make you wonder if a similar genetic screening process could identify if our gut flora have picked up any other genes from “dietary bacteria.”

Paper: Hehemann et al, “Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota.” Nature464: 908-912 (Apr 2010) – doi:10.1038/nature08937

Check out my other academic paper walkthroughs/summaries