Tag: Qualcomm

  • RISC-V in Computers

    One of the most exciting technological developments from the semiconductor side of things is the rapid development of the ecosystem around the open-source RISC-V instruction set architecture (ISA). One landmark in its rise is that the architecture appears to be moving beyond just behind-the-scenes projects to challenging Intel/AMD’s x86 architecture and ARM (used by Apple and Qualcomm) in customer-facing applications.

    This article highlights this crucial development by reporting on early adopters embracing RISC-V to move into higher-end devices like laptops. Companies like Framework and DeepComputing have just launched or are planning to launch RISC-V laptops. While RISC-V-powered hardware still have a steep mountain to climb of software and performance challenges (as evidenced by the amount of time it’s taken for the ARM ecosystem to be credible in PCs), Intel’s recent setbacks and ARM’s legal battles with Qualcomm over licensing (pretty much guaranteeing every company that uses ARM is now going to work on RISC-V) coupled with the open source nature of RISC-V potentially allowing for a lot more innovation in form factors and functionality may have created an opening here for enterprising companies willing to make the investment.


    This Year, RISC-V Laptops Really Arrive
    Matthew S. Smith | IEEE Spectrum

  • Why Intel has to make its foundry business work

    Historically, Intel has (1) designed and (2) manufactured its chips that it sells (primarily into computer and server systems). It prided itself on having the most advanced (1) designs and (2) manufacturing technology, keeping both close to its chest.

    In the late 90s/00s, semiconductor companies increasingly embraced the “fabless model”, whereby they would only do the (1) design while outsourcing the manufacturing to foundries like TSMC. This made it much easier and less expensive to build up a burgeoning chip business and is the secret to the success of semiconductor giants like NVIDIA and Qualcomm.

    Companies like Intel scoffed at this, arguing that the combination of (1) design and (2) manufacturing gave their products an advantage, one that they used to achieve a dominant position in the computing chip segment. And, it’s an argument which underpins why they have never made a significant effort in becoming a contract manufacturer — after all, if part of your technological magic is the (2) manufacturing, why give it to anyone else?

    The success of TSMC has brought a lot of questions about Intel’s advantage in manufacturing and, given recent announcements by Intel and the US’s CHIPS Act, a renewed focus on actually becoming a contract manufacturer to the world’s leading chip designers.

    While much of the attention has been paid to the manufacturing prowess rivalry and the geopolitical reasons behind this, I think the real reason Intel has to make the foundry business work is simple: their biggest customers are all becoming chip designers.

    While a lot of laptops and desktops and servers are still sold in the traditional fashion, the reality is more and more of the server market is being dominated by a handful of hyperscale data center operators like Amazon, Google, Meta/Facebook, and Microsoft, companies that have historically been able to obtain the best prices from Intel because of their volume. But, in recent years, in the chase for better and better performance and cost and power consumption, they have begun designing their own chips adapted to their own systems (as this latest Google announcement for Google’s own ARM-based server chips shows).

    Are these chips as good as Intel’s across every dimension? Almost certainly not. It’s hard to overtake a company like Intel’s decades of design prowess and market insight. But, they don’t have to be. They only have to be better at the specific use case Google / Microsoft / Amazon / etc need it to be for.

    And, in that regard, that leaves Intel with really only one option: it has to make the foundry business work, or it risks losing not just the revenue from (1) designing a data center chip, but from the (2) manufacturing as well.


  • Good Windows on ARM at last?

    Silicon nerd 🤓 that I am, I have gone through multiple cycles of excited-then-disappointed for Windows-on-ARM, especially considering the success of ChromeOS with ARM, the Apple M1/M2 (Apple’s own ARM silicon which now powers its laptops), and AWS Graviton (Amazon’s own ARM chip for its cloud computing services).

    I may just be setting myself up for disappointment here but these (admittedly vendor-provided) specs for their new Snapdragon X (based on technology they acquired from Nuvia and are currently being sued for by ARM) look very impressive. Biased as they may be, the fact that these chips are performing in the same performance range as Intel/AMD/Apple’s silicon on single-threaded benchmarks (not to mention the multi-threaded applications which work well with the Snapdragon X’s 12 cores) hopefully bodes well for the state of CPU competition in the PC market!

    Single-threaded CPU performance (Config A is a high performance tuned offering, Config B is a “thin & light” configuration)
    Multi-threaded CPU performance (Config A is a high performance tuned offering, Config B is a “thin & light” configuration)

    Qualcomm Snapdragon X Elite Performance Preview: A First Look at What’s to Come
    Ryan Smith | Anandtech

  • Why VR Could be as Big as the Smartphone Revolution

    Technology in the 1990s and early 2000s marched to the beat of an Intel-and-Microsoft-led drum.

    Source: IT Portal

    Intel would release new chips at a regular cadence: each cheaper, faster, and more energy efficient than the last. This would let Microsoft push out new, more performance-hungry software, which would, in turn, get customers to want Intel’s next, more awesome chip. Couple that virtuous cycle with the fact that millions of households were buying their first PCs and getting onto the Internet for the first time — and great opportunities were created to build businesses and products across software and hardware.

    But, over time, that cycle broke down. By the mid-2000s, Intel’s technological progress bumped into the limits of what physics would allow with regards to chip performance and cost. Complacency from its enviable market share coupled with software bloat from its Windows and Office franchises had a similar effect on Microsoft. The result was that the Intel and Microsoft drum stopped beating as they became unable to give the mass market a compelling reason to upgrade to each subsequent generation of devices.

    The result was a hollowing out of the hardware and semiconductor industries tied to the PC market that was only masked by the innovation stemming from the rise of the Internet and the dawn of a new technology cycle in the late 2000s in the form of Apple’s iPhone and its Android competitors: the smartphone.

    Source: Mashable

    A new, but eerily familiar cycle began: like clockwork, Qualcomm, Samsung, and Apple (playing the part of Intel) would devise new, more awesome chips which would feed the creation of new performance-hungry software from Google and Apple (playing the part of Microsoft) which led to demand for the next generation of hardware. Just as with the PC cycle, new and lucrative software, hardware, and service businesses flourished.

    But, just as with the PC cycle, the smartphone cycle is starting to show signs of maturity. Apple’s recent slower than expected growth has already been blamed on smartphone market saturation. Users are beginning to see each new generation of smartphone as marginal improvements. There are also eery parallels between the growing complaints over Apple software quality from even Apple fans and the position Microsoft was in near the end of the PC cycle.

    While its too early to call the end for Apple and Google, history suggests that we will eventually enter a similar phase with smartphones that the PC industry experienced. This begs the question: what’s next? Many of the traditional answers to this question — connected cars, the “Internet of Things”, Wearables, Digital TVs — have not yet proven themselves to be truly mass market, nor have they shown the virtuous technology upgrade cycle that characterized the PC and smartphone industries.

    This brings us to Virtual Reality. With VR, we have a new technology paradigm that can (potentially) appeal to the mass market (new types of games, new ways of doing work, new ways of experiencing the world, etc.). It also has a high bar for hardware performance that will benefit dramatically from advances in technology, not dissimilar from what we saw with the PC and smartphone.

    Source: Forbes

    The ultimate proof will be whether or not a compelling ecosystem of VR software and services emerges to make this technology more of a mainstream “must-have” (something that, admittedly, the high price of the first generation Facebook/OculusHTC/Valve, and Microsoft products may hinder).

    As a tech enthusiast, its easy to get excited. Not only is VR just frickin’ cool (it is!), its probably the first thing since the smartphone with the mass appeal and virtuous upgrade cycle that can bring about the huge flourishing of products and companies that makes tech so dynamic to be involved with.

    Thought this was interesting? Check out some of my other pieces on Tech industry

  • Tech Strategy 101

    Working on tech strategy consulting case for 18 months ingrains a thing or two in your head about strategy for tech companies, so I thought I’d lay out, in one blog post the major lessons I’ve learned about how strategy in the technology sector works.

    To understand that, it’s important to first understand what makes technology special? From that perspective, there are three main things which drive tech strategy:

    1. Low cost of innovation – Technology companies need to be innovative to be successful, duh. But, the challenge with handling tech strategy is not innovation but that innovation in technology is cheap. Your product can be as easily outdone by a giant with billions of dollars like Google as it can be outdone by a couple of bright guys in a garage who still live with their parents.
    2. Moore’s Law – When most technologists think of Moore’s Law, they think of its academic consequences (mainly that chip technology doubles every two years). This is true (and has been for over 50 years), but the strategic consequence of Moore’s Law can be summed up in six words: “Tomorrow will be better, faster, cheaper.” Can you think of any other industry which has so quickly and consistently increased quality while lowering cost?
    3. Ecosystem linkages – No technology company stands alone. They are all inter-related and inter-dependent. Facebook may be a giant in the Web world, but it’s success depends on a wide range of relationships: it depends on browser makers adhering to web standards, on Facebook application developers wanting to use the Facebook platform, on hardware providers selling the right hardware to let Facebook handle the millions of users who want to use it, on CDNs/telecom companies providing the right level of network connectivity, on internet advertising standards, etc. This complex web of relationships is referred to by many in the industry as the ecosystem. A technology company must learn to understand and shape its ecosystem in order to succeed.

    Put it all together, what does it all mean? Four things:

    Source: the book

    I. Only the paranoid survive
    This phrase, popularized by ex-Intel CEO Andy Grove, is very apt for describing the tech industry. The low cost of innovation means that your competition could come from anywhere: well-established companies, medium-sized companies, hot new startups, enterprising university students, or a legion of open source developers. The importance of ecosystem linkages means that your profitability is dependent not only on what’s going on with your competitors, but also about the broader ecosystem. If you’re Microsoft, you don’t only have to think about what competitors like Apple and Linux are doing, you also need to think about the health of the overall PC market, about how to connect your software to new smartphones, and many other ecosystem concerns which affect your profitability. And the power of Moore’s Law means that new products need to be rolled out quickly, as old products rapidly turn into antiques from the advance of technology. The result of all of this is that only the technology companies which are constantly fearful of emerging threats will succeed.

    II. To win big, you need to change the rules
    The need to be constantly innovative (Moore’s Law and low cost of innovation) and the importance of ecosystem linkages favors large, incumbent companies, because they have the resources/manpower to invest in marketing, support, and R&D and they are the ones with the existing ecosystem relationships. As a result, the only way for a little startup to win big, or for a large company to attack another large company is to change the rules of competition. For Apple, to win in a smartphone market dominated by Nokia and RIM required changing the rules of the “traditional” smartphone competition by:

    • Building a new type of user-interface driven by accelerometer and touchscreen unlike anything seen before
    • Designing in a smartphone web browser actually comparable to what you’d expect on a PC as opposed to a pale imitation
    • Building an application store to help establish a new definition of smartphone – one that runs a wide range of software rather than one that runs only software from the carrier/phone manufacturer
    • Bringing the competition back to Apple’s home turf of making complete hardware and software solutions which tie together well, rather than just competing on one or the other

    Apple’s iPhone not only provided a tidy profit for Apple, it completely took RIM, which had been betting on taking its enterprise features into the consumer smartphone market, and Nokia, which had been betting on its services strategy, by surprise. Now, Nokia and every other phone manufacturer is desperately trying to compete in a game designed by Apple – no wonder Nokia recently forecasted that it expected its market share to continue to drop.

    But it’s not just Apple that does this. Some large companies like Microsoft and Cisco are masters at this game, routinely disrupting new markets with products and services which tie back to their other product offerings – forcing incumbents to compete not only with a new product, but with an entire “platform”. Small up-and-comers can also play this game. MySQL is a great example of a startup which turned the database market on its head by providing access to its software and source code for free (to encourage adoption) in return for a chance to sell services.

    III. Be a good ecosystem citizen
    Successful tech companies cannot solely focus on their specific markets and product lines. The importance of ecosystem linkages forces tech companies to look outward.

    • They must influence industry standards, oftentimes working with their competitors (case in point: look at the corporate membership in the Khronos Group which controls the OpenGL graphics standard), to make sure their products are supported by the broader industry.
    • They oftentimes have to give away technology and services for free to encourage the ecosystem to work with them. Even mighty Microsoft, who’s CEO had once called Linux “a cancer”, has had to open source 20,000 lines of operating system code in an attempt to increase the attractiveness of the Microsoft server platform to Linux technology. Is anyone surprised that Google and Nokia have open sourced the software for their Android and Symbian mobile phone operating systems and have gone to great lengths to make it easy for software developers to design software for them?
    • They have to work collaboratively with a wide range of partners and providers. Intel and Microsoft work actively with PC manufacturers to help with marketing and product targeting. Mobile phone chip manufacturers invest millions in helping mobile phone makers and mobile software developers build phones with their chip technology. Even “simple” activities like outsourcing manufacturing requires a strong partnership in order to get things done properly.
    • The largest of companies (e.g. Cisco, Intel, Qualcomm, etc) takes this whole influence thing a whole step further by creating corporate venture groups to invest in startups, oftentimes for the purpose of influencing the ecosystem in their favor.

    The technology company that chooses not to play nice with the rest of the ecosystem will rapidly find itself alone and unprofitable.

    IV. Never stop overachieving
    There are many ways to screw up in the technology industry. You might not be paranoid enough and watch as a new competitor or Moore’s Law eats away at your profits. You might not present a compelling enough product and watch as your partners and the industry as a whole shuns your product. But the terrifying thing is that this is true regardless of how well you were doing a few months ago — it could just as easily happen to a market leader as a market follower (i.e. Polaroid watching its profits disappear when digital cameras entered the scene).
    As a result, it’s important for every technology company to keep their eye on the ball in two key areas, so as to reduce the chance of misstep and increase the chance that you recover when you eventually do:

    • Stay lean – I am amazed at how many observers of the technology industry (most often the marketing types) seem to think that things like keeping costs low, setting up a good IT system, and maintaining a nimble yet deliberate decision process are unimportant as long as you have an innovative design or technology. This is very short-sighted especially when you consider how easy it is for a company to take a wrong step. Only the lean and nimble companies will survive the inevitable hard times, and, in good times, it is the lean and nimble companies which can afford to cut prices and offer more services better than their competitors.
    • Invest in innovation – At the end of the day, technology is about innovation, and the companies which consistently grow and turn a profit are the ones who invest in that. If your engineers and scientists aren’t getting the resources it needs, no amount of marketing or “business development” will save you from oblivion. And, if your engineers/scientists are cranking out top notch research and development, then even if you make a mistake, there’s a decent chance you’ll be ready to bounce right back.

    Obviously, each of these four “conclusions” needs to be fleshed out further with details and concrete analyses before they can be truly called a “strategy”. But, I think they are a very useful framework for understanding how to make a tech company successful (although they don’t give any magic answers), and any exec who doesn’t understand these will eventually learn them the hard way.

    Thought this was interesting? Check out some of my other pieces on Tech industry