Why Tech Success Doesn’t Translate to Hardtech

Having been lucky enough to invest in both tech (cloud, mobile, software) and “hardtech” (materials, cleantech, energy, life science) startups (and having also ran product at a mobile app startup), it has been striking to see how fundamentally different the paradigms that drive success in each are.

Whether knowingly or not, most successful tech startups over the last decade have followed a basic playbook:

  1. Take advantage of rising smartphone penetration and improvements in cloud technology to build digital products that solve challenges in big markets pertaining to access (e.g., to suppliers, to customers, to friends, to content, to information, etc.)
  2. Build a solid team of engineers, designers, growth, sales, marketing, and product people to execute on lean software development and growth methodologies
  3. Hire the right executives to carry out the right mix of tried-and-true as well as “out of the box” channel and business development strategies to scale bigger and faster

This playbook appears deceptively simple but is very difficult to execute well. It works because for markets where “software is eating the world”:

Source: Techcrunch
  • There is relatively little technology risk: With the exception of some of the most challenging AI, infrastructure, and security challenges, most tech startups are primarily dealing with engineering and product execution challenges — what is the right thing to build and how do I build it on time, under budget? — rather than fundamental technology discovery and feasibility challenges
  • Skills & knowledge are broadly transferable: Modern software development and growth methodologies work across a wide range of tech products and markets. This means that effective engineers, salespeople, marketers, product people, designers, etc. at one company will generally be effective at another. As a result, its a lot easier for investors/executives to both gauge the caliber of a team (by looking at their experience) and augment a team when problems arise (by recruiting the right people with the right backgrounds).
  • Distribution is cheap and fast: Cloud/mobile technology means that a new product/update is a server upgrade/browser refresh/app store download away. This has three important effects:
  1. The first is that startups can launch with incomplete or buggy solutions because they can readily provide hotfixes and upgrades.
  2. The second is that startups can quickly release new product features and designs to respond to new information and changing market conditions.
  3. The third is that adoption is relatively straightforward. While there may be some integration and qualification challenges, in general, the product is accessible via a quick download/browser refresh, and the core challenge is in getting enough people to use a product in the right way.

In contrast, if you look at hardtech companies, a very different set of rules apply:

Source: XKCD
  • Technology risk/uncertainty is inherent: One of the defining hallmarks of a hardtech company is dealing with uncertainty from constraints imposed by reality (i.e. the laws of physics, the underlying biology, the limits of current technology, etc.). As a result, hardtech startups regularly face feasibility challenges — what is even possible to build? — and uncertainty around the R&D cycles to get to a good outcome — how long will it take / how much will it cost to figure this all out?
  • Skills & knowledge are not easily transferable: Because the technical and business talent needed in hardtech is usually specific to the field, talent and skills are not necessarily transferable from sector to sector or even company to company. The result is that it is much harder for investors/executives to evaluate team caliber (whether on technical merits or judging past experience) or to simply put the right people into place if there are problems that come up.
  • Product iteration is slow and costly: The tech startup ethos of “move fast and break things” is just harder to do with hardtech.
  1. At the most basic level, it just costs a lot more and takes a lot more time to iterate on a physical product than a software one. It’s not just that physical products require physical materials and processing, but the availability of low cost technology platforms like Amazon Web Services and open source software dramatically lower the amount of time / cash needed to make something testable in tech than in hardtech.
  2. Furthermore, because hardtech innovations tend to have real-world physical impacts (to health, to safety, to a supply chain/manufacturing line, etc.), hardtech companies generally face far more regulatory and commercial scrutiny. These groups are generally less forgiving of incomplete/buggy offerings and their assessments can lengthen development cycles. Hardtech companies generally can’t take the “ask for forgiveness later” approaches that some tech companies (i.e. Uber and AirBnb) have been able to get away with (exhibit 1: Theranos).

As a result, while there is no single playbook that works across all hardtech categories, the most successful hardtech startups tend to embody a few basic principles:

  1. Go after markets where there is a very clear, unmet need: The best hardtech entrepreneurs tend to take very few chances with market risk and only pursue challenges where a very well-defined unmet need (i.e., there are no treatments for Alzheimer’s, this industry needs a battery that can last at least 1000 cycles, etc) blocks a significant market opportunity. This reduces the risk that a (likely long and costly) development effort achieves technical/scientific success without also achieving business success. This is in contrast with tech where creating or iterating on poorly defined markets (i.e., Uber and Airbnb) is oftentimes at the heart of what makes a company successful.
  2. Focus on “one miracle” problems: Its tempting to fantasize about what could happen if you could completely re-write every aspect of an industry or problem but the best hardtech startups focus on innovating where they won’t need the rest of the world to change dramatically in order to have an impact (e.g., compatible with existing channels, business models, standard interfaces, manufacturing equipment, etc). Its challenging enough to advance the state of the art of technology — why make it even harder?
  3. Pursue technologies that can significantly over-deliver on what the market needs: Because of the risks involved with developing advanced technologies, the best hardtech entrepreneurs work in technologies where even a partial success can clear the bar for what is needed to go to market. At the minimum, this reduces the risk of failure. But, hopefully, it gives the company the chance to fundamentally transform the market it plays in by being 10x better than the alternatives. This is in contrast to many tech markets where market success often comes less from technical performance and more from identifying the right growth channels and product features to serve market needs (i.e., Facebook, Twitter, and Snapchat vs. MySpace, Orkut, and Friendster; Amazon vs. brick & mortar bookstores and electronics stores)

All of this isn’t to say that there aren’t similarities between successful startups in both categories — strong vision, thoughtful leadership, and success-oriented cultures are just some examples of common traits in both. Nor is it to denigrate one versus the other. But, practically speaking, investing or operating successfully in both requires very different guiding principles and speaks to the heart of why its relatively rare to see individuals and organizations who can cross over to do both.

Special thanks to Sophia Wang, Ryan Gilliam, and Kevin Lin Lee for reading an earlier draft and making this better!

Thought this was interesting? Check out some of my other pieces on Tech industry

What Happens After the Tech Bubble Pops

In recent years, it’s been the opposite of controversial to say that the tech industry is in a bubble. The terrible recent stock market performance of once high-flying startups across virtually every industry (see table below) and the turmoil in the stock market stemming from low oil prices and concerns about the economies of countries like China and Brazil have raised fears that the bubble is beginning to pop.

While history will judge when this bubble “officially” bursts, the purpose of this post is to try to make some predictions about what will happen during/after this “correction” and pull together some advice for people in / wanting to get into the tech industry. Starting with the immediate consequences, one can reasonably expect that:

  • Exit pipeline will dry up: When startup valuations are higher than what the company could reasonably get in the stock market, management teams (who need to keep their investors and employees happy) become less willing to go public. And, if public markets are less excited about startups, the price acquirers need to pay to convince a management team to sell goes down. The result is fewer exits and less cash back to investors and employees for the exits that do happen.
  • VCs become less willing to invest: VCs invest in startups on the promise that future IPOs and acquisitions will make them even more money. When the exit pipeline dries up, VCs get cold feet because the ability to get a nice exit seems to fade away. The result is that VCs become a lot more price-sensitive when it comes to investing in later stage companies (where the dried up exit pipeline hurts the most).
  • Later stage companies start cutting costs: Companies in an environment where they can’t sell themselves or easily raise money have no choice but to cut costs. Since the vast majority of later-stage startups run at a loss to increase growth, they will find themselves in the uncomfortable position of slowing down hiring and potentially laying employees off, cutting back on perks, and focusing a lot more on getting their financials in order.

The result of all of this will be interesting for folks used to a tech industry (and a Bay Area) flush with cash and boundlessly optimistic:

  1. Job hopping should slow: “Easy money” to help companies figure out what works or to get an “acquihire” as a soft landing will be harder to get in a challenged financing and exit environment. The result is that the rapid job hopping endemic in the tech industry should slow as potential founders find it harder to raise money for their ideas and as it becomes harder for new startups to get the capital they need to pay top dollar.
  2. Strong companies are here to stay: While there is broad agreement that there are too many startups with higher valuations than reasonable, what’s also become clear is there are a number of mature tech companies that are doing exceptionally well (i.e. Facebook, Amazon, Netflix, and Google) and a number of “hotshots” which have demonstrated enough growth and strong enough unit economics and market position to survive a challenged environment (i.e. Uber, Airbnb). This will let them continue to hire and invest in ways that weaker peers will be unable to match.
  3. Tech “luxury money” will slow but not disappear: Anyone who lives in the Bay Area has a story of the ridiculousness of “tech money” (sky-high rents, gourmet toast,“its like Uber but for X”, etc). This has been fueled by cash from the startup world as well as free flowing VC money subsidizing many of these new services . However, in a world where companies need to cut costs, where exits are harder to come by, and where VCs are less willing to subsidize random on-demand services, a lot of this will diminish. That some of these services are fundamentally better than what came before (i.e. Uber) and that stronger companies will continue to pay top dollar for top talent will prevent all of this from collapsing (and lets not forget San Francisco’s irrational housing supply policies). As a result, people expecting a reversal of gentrification and the excesses of tech wealth will likely be disappointed, but its reasonable to expect a dramatic rationalization of the price and quantity of many “luxuries” that Bay Area inhabitants have become accustomed to soon.

So, what to do if you’re in / trying to get in to / wanting to invest in the tech industry?

  • Understand the business before you get in: Its a shame that market sentiment drives fundraising and exits, because good financial performance is generally a pretty good indicator of the long-term prospects of a business. In an environment where its harder to exit and raise cash, its absolutely critical to make sure there is a solid business footing so the company can keep going or raise money / exit on good terms.
  • Be concerned about companies which have a lot of startup exposure: Even if a company has solid financial performance, if much of that comes from selling to startups (especially services around accounting, recruiting, or sales), then they’re dependent on VCs opening up their own wallets to make money.
  • Have a much higher bar for large, later-stage companies: The companies that will feel the most “pain” the earliest will be those with with high valuations and high costs. Raising money at unicorn valuations can make a sexy press release but it doesn’t amount to anything if you can’t exit or raise money at an even higher valuation.
  • Rationalize exposure to “luxury”: Don’t expect that “Uber but for X” service that you love to stick around (at least not at current prices)…
  • Early stage companies can still be attractive: Companies that are several years from an exit & raising large amounts of cash will be insulated in the near-term from the pain in the later stage, especially if they are committed to staying frugal and building a disruptive business. Since they are already relatively low in valuation and since investors know they are discounting off a valuation in the future (potentially after any current market softness), the downward pressures on valuation are potentially lighter as well.

Thought this was interesting or helpful? Check out some of my other pieces on investing / finance.

Web vs Native

When Steve Jobs first launched the iPhone in 2007, Apple’s perception of where the smartphone application market would move was in the direction of web applications. The reasons for this are obvious: people are familiar with how to build web pages and applications, and it simplifies application delivery.

Yet in under a year, Apple changed course, shifting the focus of iPhone development from web applications to building native applications custom-built (by definition) for the iPhone’s operating system and hardware. While I suspect part of the reason this was done was to lock-in developers, the main reason was certainly the inadequacy of available browser/web technology. While we can debate the former, the latter is just plain obvious. In 2007, the state of web development was relatively primitive relative to today. There was no credible HTML5 support. Javascript performance was paltry. There was no real way for web applications to access local resources/hardware capabilities. Simply put, it was probably too difficult for Apple to kludge together an application development platform based solely on open web technologies which would get the sort of performance and functionality Apple wanted.

But, that was four years ago, and web technology has come a long way. Combine that with the tech commentator-sphere’s obsession with hyping up a rivalry between “native vs HTML5 app development”, and it begs the question: will the future of application development be HTML5 applications or native?

There are a lot of “moving parts” in a question like this, but I believe the question itself is a red herring. Enhancements to browser performance and the new capabilities that HTML5 will bring like offline storage, a canvas for direct graphic manipulation, and tools to access the file system, mean, at least to this tech blogger, that “HTML5 applications” are not distinct from native applications at all, they are simply native applications that you access through the internet. Its not a different technology vector – it’s just a different form of delivery.

Critics of this idea may cite that the performance and interface capabilities of browser-based applications lag far behind those of “traditional” native applications, and thus they will always be distinct. And, as of today, they are correct. However, this discounts a few things:

  • Browser performance and browser-based application design are improving at a rapid rate, in no small part because of the combination of competition between different browsers and the fact that much of the code for these browsers is open source. There will probably always be a gap between browser-based apps and native, but I believe this gap will continue to narrow to the point where, for many applications, it simply won’t be a deal-breaker anymore.
  • History shows that cross-platform portability and ease of development can trump performance gaps. Once upon a time, all developers worth their salt coded in low level machine language. But this was a nightmare – it was difficult to do simple things like showing text on a screen, and the code written only worked on specific chips and operating systems and hardware configurations. I learned C which helped to abstract a lot of that away, and, keeping with the trend of moving towards more portability and abstraction, the mobile/web developers of today develop with tools (Python, Objective C, Ruby, Java, Javascript, etc) which make C look pretty low-level and hard to work with. Each level of abstraction adds a performance penalty, but that has hardly stopped developers from embracing them, and I feel the same will be true of “HTML5”.
  • Huge platform economic advantages. There are three huge advantages today to HTML5 development over “traditional native app development”. The first is the ability to have essentially the same application run across any device which supports a browser. Granted, there are performance and user experience issues with this approach, but when you’re a startup or even a corporate project with limited resources, being able to get wide distribution for earlier products is a huge advantage. The second is that HTML5 as a platform lacks the control/economic baggage that iOS and even Android have where distribution is controlled and “taxed” (30% to Apple/Google for an app download, 30% cut of digital goods purchases). I mean, what other reason does Amazon have to move its Kindle application off of the iOS native path and into HTML5 territory? The third is that web applications do not require the latest and greatest hardware to perform amazing feats. Because these apps are fundamentally browser-based, using the internet to connect to a server-based/cloud-based application allows even “dumb devices” to do amazing things by outsourcing some of that work to another system. The combination of these three makes it easier to build new applications and services and make money off of them – which will ultimately lead to more and better applications and services for the “HTML5 ecosystem.”

Given Google’s strategic interest in the web as an open development platform, its no small wonder that they have pushed this concept the furthest. Not only are they working on a project called Native Client to let users achieve “native performance” with the browser, they’ve built an entire operating system centered entirely around the browser, Chrome OS, and were the first to build a major web application store, the Chrome Web Store to help with application discovery.

While it remains to be seen if any of these initiatives will end up successful, this is definitely a compelling view of how the technology ecosystem evolves, and, putting on my forward-thinking cap on, I would not be surprised if:

  1. The major operating systems became more ChromeOS-like over time. Mac OS’s dashboard widgets and Windows 7’s gadgets are already basically HTML5 mini-apps, and Microsoft has publicly stated that Windows 8 will support HTML5-based application development. I think this is a sign of things to come as the web platform evolves and matures.
  2. Continued focus on browser performance may lead to new devices/browsers focused on HTML5 applications. In the 1990s/2000s, there was a ton of attention focused on building Java accelerators in hardware/chips and software platforms who’s main function was to run Java. While Java did not take over the world the way its supporters had thought, I wouldn’t be surprised to see a similar explosion just over the horizon focused on HTML5/Javascript performance – maybe even HTML5 optimized chips/accelerators, additional ChromeOS-like platforms, and potentially browsers optimized to run just HTML5 games or enterprise applications?
  3. Web application discovery will become far more important. The one big weakness as it stands today for HTML5 is application discovery. Its still far easier to discover a native mobile app using the iTunes App Store or the Android Market than it is to find a good HTML5 app. But, as platform matures and the platform economics shift, new application stores/recommendation engines/syndication platforms will become increasingly critical.

Thought this was interesting? Check out some of my other pieces on Tech industry

Standards Have No Standards

Many forms of technology requires standards to work. As a result, it is in the best interest of all parties in the technology ecosystem to participate in standards bodies to ensure interoperability.

The two main problem with getting standards working can be summed up, as all good things in technology can be, in the form of webcomics. 

Problem #1, from XKCDpeople/companies/organizations keep creating more standards.

Source: XKCD

The cartoon takes the more benevolent look at how standards proliferate; the more cynical view is that individuals/corporations recognize that control or influence over an industry standard can give them significant power in the technology ecosystem. I think both the benevolent and the cynical view are always at play – but the result is the continual creation of “bigger and badder” standards which are meant to replace but oftentimes fail to completely supplant existing ones. Case in point, as someone who has spent a fair amount of time looking at technologies to enable greater intelligence/network connectivity in new types of devices (think TVs, smart meters, appliances, thermostats, etc.), I’m still puzzled as to why we have so many wireless communication standards and protocols for achieving it (Bluetooth, Zigbee, ZWave, WiFi, DASH7, 6LowPAN, etc)

Problem #2: standards aren’t purely technical undertakings – they’re heavily motivated by the preferences of the bodies and companies which participate in formulating them, and like the US’s “wonderful” legislative process, involves mashing together a large number of preferences, some of which might not necessarily be easily compatible with one another. This can turn quite political and generate standards/working papers which are too difficult to support well (i.e. like DLNA). Or, as Dilbert sums it up, these meetings are full of people who are instructed to do this:

Source: Dilbert

Or this:

Source: Dilbert

Our one hope is that the industry has enough people/companires who are more vested in the future of the technology industry than taking unnecessarily cheap shots at one another… It’s a wonder we have functioning standards at all, isn’t it?

Thought this was interesting? Check out some of my other pieces on Tech industry

What is with Microsoft’s consumer electronics strategy?

Genius? Source: Softpedia

Regardless of how you feel about Microsoft’s products, you have to appreciate the brilliance of their strategic “playbook”:

  1. Use the fact that Microsoft’s operating system/productivity software is used by almost everyone to identify key customer/partner needs
  2. Build a product which is usually only a second/third-best follower product but make sure it’s tied back to Microsoft’s products
  3. Take advantage of the time and market share that Microsoft’s channel influence, developer community, and product integration buys to invest in the new product with Microsoft’s massive budget until it achieves leadership
  4. If steps 1-3 fail to give Microsoft a dominant position, either exit (because the market is no longer important) or buy out a competitor
  5. Repeat

While the quality of Microsoft’s execution of each step can be called into question, I’d be hard pressed to find a better approach then this one, and I’m sure much of their success can be attributed to finding good ways to repeatedly follow this formula.

It’s for that reason that I’m completely  bewildered by Microsoft’s consumer electronics business strategy. Instead of finding good ways to integrate the Zune, XBox, and Windows Mobile franchises together or with the Microsoft operating system “mothership” the way Microsoft did by integrating its enterprise software with Office or Internet Explorer with Windows, these three businesses largely stand apart from Microsoft’s home field (PC software) and even from each other.

This is problematic for two big reasons. First, because non-PC devices are outside of Microsoft’s usual playground, it’s not a surprise that Microsoft finds it difficult to expand into new territory. For Microsoft to succeed here, it needs to pull out all the stops and it’s shocking to me that a company with a stake in the ground in four key device areas (PCs, mobile phones, game consoles, and portable media players) would choose not to use one of the few advantages it has over its competitors.

The second and most obvious (to consumers at least) is that Apple has not made this mistake. Apple’s iPhone and iPod Touch product lines are clear evolutions of their popular iPod MP3 players which integrate well with Apple’s iTunes computer software and iTunes online store. The entire Apple line-up, although each product is a unique entity, has a similar look and feel. The Safari browser that powers the Apple computer internet experience is, basically, the same that powers the iPhone and iPod Touch. Similarly, the same online store and software (iTunes) which lets iPods load themselves with music lets iPod Touches/iPhones load themselves with applications.

That neat little integrated package not only makes it easier for Apple consumers to use a product, but the coherent experience across the different devices gives customers even more of a reason to use and/or buy other Apple products.

Contrast that approach with Microsoft’s. Not only are the user interfaces and product designs for the Zune, XBox, and Windows Mobile completely different from one another, they don’t play well together at all. Applications that run on one device (be it the Zune HD, on a Windows PC, on an XBox, or on Windows Mobile) are unlikely to be able to run on any other. While one might be able to forgive this if it was just PC applications which had trouble being “ported” to Microsoft’s other devices (after all, apps that run on an Apple computer don’t work on the iPhone and vice versa), the devices that one would expect this to work well with (i.e. the Zune HD and the XBox because they’re both billed as gaming platforms, or the Zune HD and Windows Mobile because they’re both portable products) don’t. Their application development process doesn’t line up well. And, as far as I’m aware, the devices have completely separate application and content stores!

While recreating the Windows PC experience on three other devices is definitely overkill, I think, were I in Ballmer’s shoes, I would recommend a few simple recommendations which I think would dramatically benefit all of Microsoft’s product lines (and I promise they aren’t the standard Apple/Linux fanboy’s “build something prettier” or “go open source”):

  1. Centralize all application/content “marketplaces” – Apple is no internet genius. Yet, they figured out how to do this. I fail to see why Microsoft can’t do the same.
  2. Invest in building a common application runtime across all the devices – Nobody’s expecting a low-end Windows Mobile phone or a Zune HD to run Microsoft Excel, but to expect that little widgets or games should be able to work across all of Microsoft’s devices is not unreasonable, and would go a long way towards encouraging developers to develop for Microsoft’s new device platforms (if a program can run on just the Zune HD, there’s only so much revenue that a developer can take in, but if it can also run on the XBox and all Windows Mobile phones, then the revenue potential becomes much greater) and towards encouraging consumers to buy more Microsoft gear
  3. Find better ways to link Windows to each device – This can be as simple as building something like iTunes to simplify device management and content streaming, but I have yet to meet anyone with a Microsoft device who hasn’t complained about how poorly the devices work with PCs.

Thought this was interesting? Check out some of my other pieces on Tech industry

Innovator’s Delight

Source: the book

Knowing my interest in tech strategy, a coworker recommended I pick up HBS professor Clayton Christensen’s “classic” book on disruptive innovation: The Innovator’s Dilemma. And, I have to say I was very impressed.

The book tries to answer a very interesting question: why do otherwise successful companies sometimes fail to keep up on innovation? Christensen’s answer is counter-intuitive but deep: the very factors that make a company successful, like listening to customer needs, make it difficult for successful companies to adopt disruptive innovations which create new markets and new capabilities.

This sounds completely irrational, and I was skeptical when I first heard it, but Christensen makes a very compelling case for it. He begins the book by considering the hard disk drive (HDD) industry. The reason for this is, as Christensen puts it (and this is merely page one of chapter one!):

“Those who study genetics avoid studying humans, because new generations come along only every thirty years or so, and so it takes a long time to understand the cause and effect of any changes. Instead, they study fruit flies, because fruit flies are conceived, born, mature, and die all within a single day. If you want to understand why something happens in business, study the disk drive industry. Those companies are the closest things to fruit flies that the business world will ever see.”

From that oddly compelling start, Christensen applies multiple techniques to establish the grounds for his theory. He begins by admitting that his initial hypothesis for why some HDD companies successfully innovated had nothing to do with his current explanation and was something he called “the technology mudslide”: that because technology is constantly evolving and shifting (like a mudslide), companies which could not keep moving to stay afloat (i.e. by innovating) would slip and fall.

But, when he investigated the different types of technological innovations which hit the HDD industry, he found that the large companies were actually constantly innovating, developing new techniques and technologies to improve their products. Contrary to the opinion of many in the startup community, big companies did not lack innovative agility – in fact, they were the leaders in developing and acquiring the successful technologies which allowed them to make better and better products.
But, every now and then, when the basis of competition changed, like the shift to a smaller hard disk size to accommodate a new product category like minicomputers versus mainframes or laptops versus desktops, the big companies faltered.

From that profound yet seemingly innocuous observation grew a series of studies across a number of industries (the book covers industries ranging from hardcore technology like hard disk drives and computers to industries that you normally wouldn’t associate with rapid technological innovation like mechanical excavators, off-road motorbikes, and even discount retailing) which helped Christensen come to a basic logical story involving six distinct steps:

  1. Three things dictate a company’s strategy: resources, processes, and values. Any strategy that a company wishes to embark on will fail if the company doesn’t have the necessary resources (e.g. factories, talent, etc.), processes (e.g. organizational structure, manufacturing process, etc.), and values (e.g. how a company decides between different choices). It doesn’t matter if you have two of the three.
  2. Large, successful companies value listening to their customers. Successful companies became successful because they were able to create and market products that customers were willing to pay for. Companies that didn’t do this wouldn’t survive, and resources and processes which didn’t “get with the program” were either downsized or re-oriented.
  3. Successful companies help create ecosystems which are responsive to customer needs. Successful companies need to have ways of supporting their customers. This means they need to have or build channels (e.g. through a store, or online), services (e.g. repair, installation), standards (e.g. how products are qualified and work with one another), and partners (e.g. suppliers, ecosystem partners) which are all dedicated towards the same goal. If this weren’t true, the companies would all either fail or be replaced by companies which could “get with the program.”
  4. Large, successful companies value big opportunities. If you’re a $10 million company, you only need to generate an extra $1 million in sales to grow 10%. If you’re a $10 billion company, you need to find an extra $1 billion in sales to grow an equivalent amount. Is it any wonder, then, that large companies will look to large opportunities? After all, if companies started throwing significant resources or management effort on small opportunities, the company would quickly be passed up by its competitors.
  5. Successful companies don’t have the values or processes to push innovations aimed at unproven markets, which serve new customers and needs. Because successful companies value big opportunities which meet the needs of their customers and are embedded in ecosystems which help them do that, they will mobilize their resources and processes in the best way possible to fulfill and market those needs. And, in fact, that is what Christensen saw – in almost every market he studied, when the customers of successful companies needed a new feature or level of quality, successful companies were almost always successful at either leading or acquiring the innovation necessary to do that. But, when it came to experimental products offering slimmer profit margins and targeting new customers with new needs and new ecosystems in unproven markets, successful companies often failed, even if management made those new markets a priority, because those companies lacked the values and/or processes needed. After all, if you were working in IBM’s Mainframe division, why would you chase the lower-performance, lower-profit minicomputer industry and its unfamiliar set of customers and needs and distribution channels?
  6. Disruptive innovations tend to start as inferior products, but, over time improve and eventually displace older technologies. Using the previous example, while IBM’s mainframe division found it undesirable to enter the minicomputer market, the minicomputer players were very eager to “go North” and capture the higher performance and profitability that the mainframe players enjoyed. The result? Because of the values of the mainframe players as compared with the values of the minicomputer players, minicomputer companies focused on improving their technology to both service their customer’s needs and capture the mainframe business, resulting in one disruptive innovation replacing an older one.

The most interesting thing that Christensen pointed out was that, in many cases, established companies actually beat new players to a disruptive innovation (as happened several times in the HDD and mechanical excavator industries)! But, because these companies lacked the necessary values, processes, and ecosystem, they were unable to successfully market them. Their success actually doomed them to failure!

But Christensen doesn’t stop with this multi-faceted and thorough look at why successful companies fail at disruptive innovation. He spends a sizable portion of the book explaining how companies can fight the “trappings” of success (i.e. by creating semi-independent organizations that can chase new markets and be excited about smaller opportunities), and even closes the book with an interesting “ahead-of-his-time” look (remember, this book was written over a decade ago!) at how to bring about electric cars.

I highly recommend this book to anyone interested in the technology industry or even, more broadly speaking, on understanding how to think about corporate strategy. While most business books on this subject use high-flying generalizations and poorly evaluated case studies, Christensen approaches each problem with a level of rigor and thoroughness that you rarely see in corporate boardrooms. His structured approach to explaining how disruptive innovations work, who tends to succeed at them, why, and how to conquer/adapt to them makes for a fascinating read, and, in my humble opinion, is a great example of how corporate strategy should be done – by combining well-researched data and structured thinking. To top it all, I can think of no higher praise than to say that this book, despite being written over a decade ago, has many parallels to strategic issues that companies face today (i.e. what will determine if cloud computing on netbooks can replace the traditional PC model? Will cleantech successfully replace coal and oil?), and has a number of deep insights into how venture capital firms and startups can succeed, as well as some insights into how to create organizations which can be innovative on more than just one level.

Book: The Innovator’s Dilemma by Clayton Christensen

Thought this was interesting? Check out some of my other pieces on Tech industry

Seed the Market

In my Introduction to Tech Strategy post, I mentioned that one of the most important aspects of the technology industry is the importance of ecosystem linkages. There are several ways to think about ecosystem linkages. The main linkages I mentioned in my previous post was influence over technology standards. But, there is another very important ecosystem effect for technology companies to think about: encouraging demand.

For Microsoft to be successful, for instance, they must make sure that consumers and businesses are buying new and more powerful computers. For Google to be successful, they must make sure that people are actively using the internet to find information. For Cisco to be successful, they must make sure that people are actively downloading and sharing information over networks.

Is it any wonder, then, that Microsoft develops business software (e.g. Microsoft Office) and games? Or that Google has pushed hard to encourage more widespread internet use by developing an easy-to-use web browser and two internet-centric operating systems (Android and ChromeOS)? Or that Cisco entered the set top box business (to encourage more network traffic) by acquiring Scientific Atlanta and is pushing for companies to adopt web conferencing systems (which consume a lot of networking capacity) like WebEx?

These examples hopefully illustrate that for leading tech companies, it is not sufficient just to develop a good product. It is also important that you move to make sure that customers will continue to demand your product, and a lot more of it.

This is something that Dogbert understands intuitively as this comic strip points out:

Source: Dilbert

To be a leading executive recruiter, its not sufficient just to find great executives – you have to make sure there is demand for new executives. No wonder Dogbert is such a successful CEO. He grasps business strategy like no other.

Thought this was interesting? Check out some of my other pieces on Tech industry

Tech Strategy 101

Working on tech strategy consulting case for 18 months ingrains a thing or two in your head about strategy for tech companies, so I thought I’d lay out, in one blog post the major lessons I’ve learned about how strategy in the technology sector works.

To understand that, it’s important to first understand what makes technology special? From that perspective, there are three main things which drive tech strategy:

  1. Low cost of innovation – Technology companies need to be innovative to be successful, duh. But, the challenge with handling tech strategy is not innovation but that innovation in technology is cheap. Your product can be as easily outdone by a giant with billions of dollars like Google as it can be outdone by a couple of bright guys in a garage who still live with their parents.
  2. Moore’s Law – When most technologists think of Moore’s Law, they think of its academic consequences (mainly that chip technology doubles every two years). This is true (and has been for over 50 years), but the strategic consequence of Moore’s Law can be summed up in six words: “Tomorrow will be better, faster, cheaper.” Can you think of any other industry which has so quickly and consistently increased quality while lowering cost?
  3. Ecosystem linkages – No technology company stands alone. They are all inter-related and inter-dependent. Facebook may be a giant in the Web world, but it’s success depends on a wide range of relationships: it depends on browser makers adhering to web standards, on Facebook application developers wanting to use the Facebook platform, on hardware providers selling the right hardware to let Facebook handle the millions of users who want to use it, on CDNs/telecom companies providing the right level of network connectivity, on internet advertising standards, etc. This complex web of relationships is referred to by many in the industry as the ecosystem. A technology company must learn to understand and shape its ecosystem in order to succeed.

Put it all together, what does it all mean? Four things:

Source: the book

I. Only the paranoid survive
This phrase, popularized by ex-Intel CEO Andy Grove, is very apt for describing the tech industry. The low cost of innovation means that your competition could come from anywhere: well-established companies, medium-sized companies, hot new startups, enterprising university students, or a legion of open source developers. The importance of ecosystem linkages means that your profitability is dependent not only on what’s going on with your competitors, but also about the broader ecosystem. If you’re Microsoft, you don’t only have to think about what competitors like Apple and Linux are doing, you also need to think about the health of the overall PC market, about how to connect your software to new smartphones, and many other ecosystem concerns which affect your profitability. And the power of Moore’s Law means that new products need to be rolled out quickly, as old products rapidly turn into antiques from the advance of technology. The result of all of this is that only the technology companies which are constantly fearful of emerging threats will succeed.

II. To win big, you need to change the rules
The need to be constantly innovative (Moore’s Law and low cost of innovation) and the importance of ecosystem linkages favors large, incumbent companies, because they have the resources/manpower to invest in marketing, support, and R&D and they are the ones with the existing ecosystem relationships. As a result, the only way for a little startup to win big, or for a large company to attack another large company is to change the rules of competition. For Apple, to win in a smartphone market dominated by Nokia and RIM required changing the rules of the “traditional” smartphone competition by:

  • Building a new type of user-interface driven by accelerometer and touchscreen unlike anything seen before
  • Designing in a smartphone web browser actually comparable to what you’d expect on a PC as opposed to a pale imitation
  • Building an application store to help establish a new definition of smartphone – one that runs a wide range of software rather than one that runs only software from the carrier/phone manufacturer
  • Bringing the competition back to Apple’s home turf of making complete hardware and software solutions which tie together well, rather than just competing on one or the other

Apple’s iPhone not only provided a tidy profit for Apple, it completely took RIM, which had been betting on taking its enterprise features into the consumer smartphone market, and Nokia, which had been betting on its services strategy, by surprise. Now, Nokia and every other phone manufacturer is desperately trying to compete in a game designed by Apple – no wonder Nokia recently forecasted that it expected its market share to continue to drop.

But it’s not just Apple that does this. Some large companies like Microsoft and Cisco are masters at this game, routinely disrupting new markets with products and services which tie back to their other product offerings – forcing incumbents to compete not only with a new product, but with an entire “platform”. Small up-and-comers can also play this game. MySQL is a great example of a startup which turned the database market on its head by providing access to its software and source code for free (to encourage adoption) in return for a chance to sell services.

III. Be a good ecosystem citizen
Successful tech companies cannot solely focus on their specific markets and product lines. The importance of ecosystem linkages forces tech companies to look outward.

  • They must influence industry standards, oftentimes working with their competitors (case in point: look at the corporate membership in the Khronos Group which controls the OpenGL graphics standard), to make sure their products are supported by the broader industry.
  • They oftentimes have to give away technology and services for free to encourage the ecosystem to work with them. Even mighty Microsoft, who’s CEO had once called Linux “a cancer”, has had to open source 20,000 lines of operating system code in an attempt to increase the attractiveness of the Microsoft server platform to Linux technology. Is anyone surprised that Google and Nokia have open sourced the software for their Android and Symbian mobile phone operating systems and have gone to great lengths to make it easy for software developers to design software for them?
  • They have to work collaboratively with a wide range of partners and providers. Intel and Microsoft work actively with PC manufacturers to help with marketing and product targeting. Mobile phone chip manufacturers invest millions in helping mobile phone makers and mobile software developers build phones with their chip technology. Even “simple” activities like outsourcing manufacturing requires a strong partnership in order to get things done properly.
  • The largest of companies (e.g. Cisco, Intel, Qualcomm, etc) takes this whole influence thing a whole step further by creating corporate venture groups to invest in startups, oftentimes for the purpose of influencing the ecosystem in their favor.

The technology company that chooses not to play nice with the rest of the ecosystem will rapidly find itself alone and unprofitable.

IV. Never stop overachieving
There are many ways to screw up in the technology industry. You might not be paranoid enough and watch as a new competitor or Moore’s Law eats away at your profits. You might not present a compelling enough product and watch as your partners and the industry as a whole shuns your product. But the terrifying thing is that this is true regardless of how well you were doing a few months ago — it could just as easily happen to a market leader as a market follower (i.e. Polaroid watching its profits disappear when digital cameras entered the scene).
As a result, it’s important for every technology company to keep their eye on the ball in two key areas, so as to reduce the chance of misstep and increase the chance that you recover when you eventually do:

  • Stay lean – I am amazed at how many observers of the technology industry (most often the marketing types) seem to think that things like keeping costs low, setting up a good IT system, and maintaining a nimble yet deliberate decision process are unimportant as long as you have an innovative design or technology. This is very short-sighted especially when you consider how easy it is for a company to take a wrong step. Only the lean and nimble companies will survive the inevitable hard times, and, in good times, it is the lean and nimble companies which can afford to cut prices and offer more services better than their competitors.
  • Invest in innovation – At the end of the day, technology is about innovation, and the companies which consistently grow and turn a profit are the ones who invest in that. If your engineers and scientists aren’t getting the resources it needs, no amount of marketing or “business development” will save you from oblivion. And, if your engineers/scientists are cranking out top notch research and development, then even if you make a mistake, there’s a decent chance you’ll be ready to bounce right back.

Obviously, each of these four “conclusions” needs to be fleshed out further with details and concrete analyses before they can be truly called a “strategy”. But, I think they are a very useful framework for understanding how to make a tech company successful (although they don’t give any magic answers), and any exec who doesn’t understand these will eventually learn them the hard way.

Thought this was interesting? Check out some of my other pieces on Tech industry

Made in Taiwan

I’ve been on my current consulting case for about 3 months. It is a strategy case for a technology client. As a result, I’ve been able to do a great deal of work researching various technology markets and trends, ranging from the typical (Internet search) to the more esoteric (grid computing), as I help the client scope out possible expansion opportunities.

During the course of this research, I have been surprised by many aspects of the technology value chain I did not appreciate before, but what I found most surprising on a personal level was how important Taiwan is to the global technology market.

This is a particular point of pride for me, for despite Taiwan’s pre-eminence as an economic power and it’s fascinating fusion of Western, Japanese, and Chinese influences, the island is not given the same respect or attention as Hong Kong or Singapore. Despite a vibrant political system, it has no seat on the United Nations, no diplomatic recognition by any major country, and even to the United States which guards the island as if it were its own, it is the black sheep of the US’s circle of friends.

And yet, the world as you or I know it would not be able to get along without it:

  1. Taiwan is the center of the world’s semiconductor foundry business. Because cutting-edge semiconductor factories (called fabs) are so expensive to manufacture, only the largest semiconductor firms (such as Samsung and Intel) have the annual sales numbers to justify building their own factories. Smaller players are better off outsourcing their production capacity to dedicated semiconductor factories, called foundries. Today, almost all semiconductor manufacturers use the services of a foundry to build most if not all of their semiconductors. The world’s two largest foundries, TSMC (Taiwan Semiconductor) and UMC (United Microelectronics) are located in Taiwan, and together control approximately 60% of the world foundry business (the next largest foundry is only half the size of UMC, which is itself only about one third the size of TSMC!) and exert significant influence in the global semiconductor industry.
  2. Taiwan is the center of the world’s electronics manufacturing services. What many people don’t realize is that companies like Apple and Dell tend to only specialize in marketing and some design, but not in manufacturing (which would involve building a factory, gaining manufacturing expertise and skill, and other expensive and difficult things for a firm trying to stay lean and on the cutting edge). These firms thus outsource their manufacturing to specialized firms called Electronic Manufacturing Services (EMS) firms. The world’s largest EMS company by far is the Foxconn/Hon Hai conglomerate which is responsible for about 20% of the world’s outsourced electronics manufacturing, almost double that of the second largest firm. Never heard of them? You’ve certainly heard of its products: the MacBook Pro, the iPhone, the iPod, the Playstation 3, the Wii, the Xbox 360, graphics cards for AMD/ATI and NVIDIA, … the list goes on.
  3. Taiwan is the world’s original design manufacturing capital. Original design manufacturers (ODMs) go a step further than EMS firms — they actually do provide some of their own design services (which begs the question of what we’re paying Dell and HP and Apple for when they’re outsourcing design to ODMs). This is one reason that many ODMs are also original electronics manufacturers (OEMs) — companies which attach brands to the electronics themselves (think Apple, Lenovo, Dell, etc.) Of the top 10 ODMs in the world in 2006, at least 9 are Taiwanese companies (and that’s because I was too lazy to look up the last one — TPV technology) — those firms alone control nearly 70% of the global ODM market — and they include Windows Mobile phone manufacturer and Open Handset Alliance member HTC and the rapidly growing computer OEM ASUS.
  4. Taiwan is also home to D-Link and Acer. The latter of which recently is trying to resurrect dying brands of eMachines and Gateway.

Thought this was interesting? Check out some of my other pieces on Tech industry