Tag: AI

  • Huggingface: security vulnerability?

    Anyone who’s done any AI work is familiar with Huggingface. They are a repository of trained AI models and maintainer of AI libraries and services that have helped push forward AI research. It is now considered standard practice for research teams with something to boast to publish their models to Huggingface for all to embrace. This culture of open sharing has helped the field make its impressive strides in recent years and helped make Huggingface a “center” in that community.

    However, this ease of use and availability of almost every publicly accessible model under the sun comes with a price. Because many AI models require additional assets as well as the execution of code to properly initialize, Huggingface’s own tooling could become a vulnerability. Aware of this, Huggingface has instituted their own security scanning procedures on models they host.

    But security researchers at JFrog have found that even with such measures, have identified a number of models that exploit gaps in Huggingface’s scanning which allow for remote code execution. One example model they identified baked into a Pytorch model a “phone home” functionality which would initiate a secure connection between the server running the AI model and another (potentially malicious) computer (seemingly based in Korea).

    The JFrog researchers were also able to demonstrate that they could upload models which would allow them to execute other arbitrary Python code which would not be flagged by Huggingface’s security scans.

    While I think it’s a long way from suggesting that Huggingface is some kind of security cesspool, the research reminds us that so long as a connected system is both popular and versatile, there will always be the chance for security risk, and it’s important to keep that in mind.

  • NVIDIA to make custom AI chips? Tale as old as time

    Every standard products company (like NVIDIA) eventually gets lured by the prospect of gaining large volumes and high margins of a custom products business.

    And every custom products business wishes they could get into standard products to cut their dependency on a small handful of customers and pursue larger volumes.

    Given the above and the fact that NVIDIA did used to effectively build custom products (i.e. for game consoles and for some of its dedicated autonomous vehicle and media streamer projects) and the efforts by cloud vendors like Amazon and Microsoft to build their own Artificial Intelligence silicon it shouldn’t be a surprise to anyone that they’re pursuing this.

    Or that they may eventually leave this market behind as well.

  • Going from Formula One to Odd One Out

    Market phase transitions have a tendency to be incredibly disruptive to market participants. A company or market segment used to be the “alpha wolf” can suddenly find themselves an outsider in a short time. Look at how quickly Research in Motion (makers of the Blackberry) went from industry darling to laggard after Apple’s iPhone transformed the phone market.

    Something similar is happening in the high performance computing (HPC) world (colloquially known as supercomputers). Built to do the highly complex calculations needed to simulate complex physical phenomena, HPC was, for years, the “Formula One” of the computing world. New memory, networking, and processor technologies oftentimes got their start in HPC, as it was the application that was most in need of pushing the edge (and had the cash to spend on exotic new hardware to do it).

    The use of GPUs (graphical processing units) outside of games, for example, was a HPC calling card. NVIDIA’s CUDA framework which has helped give it such a lead in the AI semiconductor race was originally built to accelerate the types of computations that HPC could benefit from.

    The success of Deep Learning as the chosen approach for AI benefited greatly from this initial work in HPC, as the math required to make deep learning worked was similar enough that existing GPUs and programming frameworks could be adapted. And, as a result, HPC benefited as well, as more interest and investment flowed into the space.

    But, we’re now seeing a market transition. Unlike with HPC which performs mathematical operations requiring every last iota of precision on mostly dense matrices, AI inference works on sparse matrices and does not require much precision at all. This has resulted in a shift in industry away from software and hardware that works for both HPC and AI and towards the much larger AI market specifically.

    Couple that with the recent semiconductor shortage (making it harder and more expensive to build HPC system with the latest GPUs) and the fact that research suggests some HPC calculations are more efficiently simulated with AI methods than actually run (in the same way that NVIDIA now uses AI to take a game rendered at a lower resolution and simulate what it would look like at a higher resolution more effectively than actually rendering the game at a higher resolution natively), I think we’re beginning to see traditional HPC shift from “Formula One of computing” to increasingly the “odd one out”.

    Trying to Do More Real HPC in an Increasingly AI World
    Timothy Prickett Morgan | The Next Platform

  • Are Driverless Cars Safer? (This time with data)

    I’m over two months late to seeing this study, but a brilliant study design (use insurance data to measure rate of bodily injury and property damage) and strong, noteworthy conclusion (doesn’t matter how you cut it, Waymo’s autonomous vehicle service resulted in fewer injuries per mile and less property damage per mile than human drivers in the same area) make this worthwhile to return to! Short and sweet paper from researchers from Waymo, Swiss Re (the re-insurer), and Stanford that is well worth the 10 minute read!

  • AI for Defense

    My good friend Danny Goodman (and Co-Founder at Swarm Aero) recently wrote a great essay on how AI can help with America’s defense. He outlines 3 opportunities:

    • “Affordable mass”: Balancing/augmenting America’s historical strategy of pursuing only extremely expensive, long-lived “exquisite” assets (e.g. F-35’s, aircraft carriers) with autonomous and lower cost units which can safely increase sensor capability &, if it comes to it, serve as alternative targets to help safeguard human operators
    • Smarter war planning: Leveraging modeling & simulation to devise better tactics and strategies (think AlphaCraft on steroids)
    • Smarter procurement: Using AI to evaluate how programs and budget line items will actually impact America’s defensive capabilities to provide objectivity in budgeting

  • Pixel’s Parade of AI

    I am a big Google Pixel fan, being an owner and user of multiple Google Pixel line products. As a result, I tuned in to the recent MadeByGoogle stream. While it was hard not to be impressed with the demonstrations of Google’s AI prowess, I couldn’t help but be a little baffled…

    What was the point of making everything AI-related?

    Given how low Pixel’s market share is in the smartphone market, you’d think the focus ought to be on explaining why “normies” should buy the phone or find the price tag compelling, but instead every feature had to tie back to AI in some way.

    Don’t get me wrong, AI is a compelling enabler of new technologies. Some of the call and photo functionalities are amazing, both as technological demonstrations but also in terms of pure utility for the user.

    But, every product person learns early that customers care less about how something gets done and more about whether the product does what they want it too. And, as someone who very much wants a meaningful rival to Apple and Samsung, I hope Google doesn’t forget that either.

  • The “Large Vision Model” (LVM) Era is Upon Us

    Unless you’ve been under a rock, you’ll know the tech industry has been rocked by the rapid advance in performance by large language models (LLMs) such as ChatGPT. By adapting self-supervised learning methods, LLMs “learn” to sound like a human being by learning how to fill in gaps in language and, by doing so, become remarkably adept at solving not just language problems but understanding & creativity.

    Interestingly, the same is happening in imaging, as models largely trained to fill in “gaps” in images are becoming amazingly adept. A friend of mine, Pearse Keane’s group at University College of London, for instance, just published a model trained using self-supervised learning methods on ophthalmological images which is capable of not only diagnosing diabetic retinopathy and glaucoma relatively accurately, but relatively good at predicting cardiovascular events and Parkinson’s.

    At a talk, Andrew Ng captured it well, by pointing out the parallels between the advances in language modeling that happened after the seminal Transformer paper and what is happening in the “large vision model” world with this great illustration.

    From Andrew Ng (Image credit: EETimes)

  • Dr. Machine Learning

    How to realize the promise of applying machine learning to healthcare

    Not going to happen anytime soon, sadly: the Doctor from Star Trek: Voyager; Source: TrekCore

    Despite the hype, it’ll likely be quite some time before human physicians will be replaced with machines (sorry, Star Trek: Voyager fans).

    While “smart” technology like IBM’s Watson and Alphabet’s AlphaGo can solve incredibly complex problems, they are probably not quite ready to handle the messiness of qualitative unstructured information from patients and caretakers (“it kind of hurts sometimes”) that sometimes lie (“I swear I’m still a virgin!”) or withhold information (“what does me smoking pot have to do with this?”) or have their own agendas and concerns (“I just need some painkillers and this will all go away”).

    Instead, machine learning startups and entrepreneurs interested in medicine should focus on areas where they can augment the efforts of physicians rather than replace them.

    One great example of this is in diagnostic interpretation. Today, doctors manually process countless X-rays, pathology slides, drug adherence records, and other feeds of data (EKGs, blood chemistries, etc) to find clues as to what ails their patients. What gets me excited is that these tasks are exactly the type of well-defined “pattern recognition” problems that are tractable for an AI / machine learning approach.

    If done right, software can not only handle basic diagnostic tasks, but to dramatically improve accuracy and speed. This would let healthcare systems see more patients, make more money, improve the quality of care, and let medical professionals focus on managing other messier data and on treating patients.

    As an investor, I’m very excited about the new businesses that can be built here and put together the following “wish list” of what companies setting out to apply machine learning to healthcare should strive for:

    • Excellent training data and data pipeline: Having access to large, well-annotated datasets today and the infrastructure and processes in place to build and annotate larger datasets tomorrow is probably the main defining . While its tempting for startups to cut corners here, that would be short-sighted as the long-term success of any machine learning company ultimately depends on this being a core competency.
    • Low (ideally zero) clinical tradeoffs: Medical professionals tend to be very skeptical of new technologies. While its possible to have great product-market fit with a technology being much better on just one dimension, in practice, to get over the innate skepticism of the field, the best companies will be able to show great data that makes few clinical compromises (if any). For a diagnostic company, that means having better sensitivty and selectivity at the same stage in disease progression (ideally prospectively and not just retrospectively).
    • Not a pure black box: AI-based approaches too often work like a black box: you have no idea why it gave a certain answer. While this is perfectly acceptable when it comes to recommending a book to buy or a video to watch, it is less so in medicine where expensive, potentially life-altering decisions are being made. The best companies will figure out how to make aspects of their algorithms more transparent to practitioners, calling out, for example, the critical features or data points that led the algorithm to make its call. This will let physicians build confidence in their ability to weigh the algorithm against other messier factors and diagnostic explanations.
    • Solve a burning need for the market as it is today: Companies don’t earn the right to change or disrupt anything until they’ve established a foothold into an existing market. This can be extremely frustrating, especially in medicine given how conservative the field is and the drive in many entrepreneurs to shake up a healthcare system that has many flaws. But, the practical reality is that all the participants in the system (payers, physicians, administrators, etc) are too busy with their own issues (i.e. patient care, finding a way to get everything paid for) to just embrace a new technology, no matter how awesome it is. To succeed, machine diagnostic technologies should start, not by upending everything with a radical solution, but by solving a clear pain point (that hopefully has a lot of big dollar signs attached to it!) for a clear customer in mind.

    Its reasons like this that I eagerly follow the development of companies with initiatives in applying machine learning to healthcare like Google’s DeepMind, Zebra Medical, and many more.